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Translator's Note

The authors use the terms "seignettoelectric" and
"seignettoelectricity” [by analogy with the properties of
Seignette's =alt] instead of "ferroelectric" and "ferro-
electricity"™, and explain their reason for doing so in the
third paragraph of chapter 1. However, because Seignette's
salt iz only one of dielectric materials (the others being
Rochelle sait, potassium dihydrogen phosphate, barium titanate,
etc.) exhibiting spontanecus polarization and hysteresis be-
tween polarization and field and to conform to the usage in
English-language sources the translator has used the terms
"ferroelectric" and "ferroelectricity.»
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FERROELECTRICS AND ANTIFERRCELECTRICS (Book by G. A. Smolenskiy
et al.); Nauka Publishing House, Leningrad Branch, Leningrad,

1971, pp 1-476
Abstract

The book is devoted to a systematic description of phys-
ical phenomena in ferroelectrics and antiferroelectrics. Seri-
ous attenticn is given to thermodynamic, dynamic and model the-
ories of ferroelectricity, which are set forth in a form under-
standable to a wide range of readers. Results of experimental
studies and their correspondence to theoretical resprecentations
are discussed.in detail using several of the most typical ferro-
electrics as an example. Considerable space is set aside for the
study of ferroelectrics with the aid of new methods: radicspec-
troscopy, Messbauer effect, scattering of slow neutrons, elec-
trooptics, etc. A review of ferroelectric and antiferroelectric
materials is given including ferroelectrics with magnetic order-
liness and with a biurr:d phase transition. The book is in-
tended for engineers, scientific workers, for graduate and upper-
class undergraduate students studying problems of sclid state
physics, priblems of radio electronics, electroacoustics, etc.

Bibliography of 1,988 titles, 189 figures, 33 tabies.
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FOREWORD

] ?erroelectricity is a young secticn of solid
ics which, however, has already ga

interest in it is very great.
the importance of physical prob
tricity and on the other ~- b
application of ferrcelectrics.

state phys-
ined a firm foothold. The
This is explaired on one hand by
lems in the field of ferrcelec-

y the 2ver increasing practical

Ferroelectrics are characterized by 2 high specific induc-
tive capacitance, a high piezomodulus, by the presence of dielec-
tric ysteresis loop, by interesting electrooptical properties,
and are, therefore, widely used in many fields of present-day
engineering: radio engineering, electroacoustics, guantum elec-
tronics and measuring technique. Ferroelectronics are used
for making small-sized capacitors, piezoelements, pyroelectric
radiant-energy receivers, ronlinear capacitive elements, posi-
stors, laser-radiation modulaters, parametric generators, etc.

The flow of works on ferroelectricity physics increases
every every year anc the prccessing of information contained i.
them is an importent task. Under these ~onditions, periodic gen-
eralization and evaluation of vresuits achieved in this area of
physics are very desirable.

A number of bocks on ferrcelectricity physics have been
published at the present time: Kentzig's survey (1957), a book
small in volume by Megaw (1957), a fundamental monograph by
Jona and Shirane (1962), a bcok by Martin with a stress on ap-
plication (1965), a book by Boerfut (1967}, a small monograph
by Fatuzzo and Merz (1967), a book by Zheludev (1968), a popular-
ccience book by Smelenskiy and Kraynik (1969), etc. The mono-
graph by Jona and Shirane and Kentzig's survey have bee: trans-
Jated into Russian.

The works cf the Sovietl scientists are insufficienily
illuminated in these publications but their role in the deve.op-
ment of ferroelectrivity ohysics is great. The mest important
stages of development of this field of science are connected

- 2 -
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with the r.ames of I. V. Kurchatcv, B 4. Vul and V. L. Ginzburg.
I. V. Kurchatov investigated in detail for the first time the
properties of Seignette's salt and laid down the fundamentals

of ferroelectricity physics. B, M. Vul discovered and jnves-
tigated ferros’=cti.. properties of barium titanate -- represert-
ative of a nr - :lass of ferrcelectrics. This discovery played
a decisive r¢.> .in the development of ferrcelectricizy phycics
ard in the apypi cation of ferrcelectrics in engineering. V. L
Ginzbury develcped thermodynamic theory and la.d down the {unda-
mentals of dynamic tnecry of fecrroelectricity. A large nunber

of ferroelectrics and antiferrcelecirics with different crystal-
iiie struchbures i.ave been discovered i: the Soviet Union. The
Soviet scientisvs investigated in detail the physical properties
of many ferroelectrics, .ney applied symmetry tnecry to the
pred cti.n of <craroscteristics of ferroelectric state, and suc-~
~essyull, utilized the latest methods of physical experiments

sr jves.:jation of fer.celectric phenomena.

“F. 31 of thi; book is setti-g forth the fundamentals

f ferrc. ¢ > icity physi s and discussion of its present-day
c.ace. - 1ming in advance the entire complexity of this tas%k
the autho.s accomplished it using a large group. Nevertlheless,
apparently the number of cutt>rs is as yet rot sc large as to
have a negative effect on the quality of the book. 1In any case,
eve._ .hing possible was done during its writing in order that
the authers' individuality would not interfere with the integ-
ri.y of t'e presentation.

In essence the book is ar assemblage of thematically in-
terconnected survey (in some cases quite detailed) chapters
which throw light on different sections of ferroelectric and
antiferroelectric physics.

Chapter 1 is devoted to a description of basic pheromena
in ferroelectrics. An idea of special features of ferrozlec-
tric phase \vansitions of the ist and 2nd kind is given. Break-
ing up of crystals into domains and also behavier of ferroelec-
trics ir strong fields are examined. Classification of ferro-
elzctrics according to the type of chemical bond is given. an~
cept ¢f antiferroelectrics is also given. A semiempirical cri-
tericn of the appearance of ferroelectricily is examined in con~-
clusicn.

Chapter 2 gives information on srystalline structure of
the most important ferroelectrics. iising them as an 2xamplie
ferroelectric phenomena are discussed in later chapters. Con-
ditions for the existence of perovskite-type siructure in which
barium titanate and many other ferroclectrics crystallize are
examined. Phase transitions in BaTi0, and displacemsnts ol ion3

in these transitions are described. Crystalline st;ucturegof
potassium dihydrophosphate, triglycine phosphate, Seignette’s
salt and sodium ritrils are discussead.

-3 -
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Chapters 3-6 set forth theory of ferroslectric phencmena.
The authors strove to illuminate it sufficiently completely and
in a form understandable to a wide range of readers. Chapter 3
sets forth thermodynamic theory based on Landau and Ginzburg
general theory of phase transitions. In addition to this, a
new and fruitful direction of theory connected with the use of
concepts of critical indices and with similarity relationships
is examined. Theoretical descripticn of a number of properties
of ferroelertrics, including nonlinear effects, is also given.

Chapter 4 is devoted to microscop:c model theories.
Both comparatively 2arly model representations (model of local
ninima, model of anharmonic escillaters, Janes electron theory,
etc.) which have not lost their significance ave set forth,
and recently published works in which problems of ferroelec-
tricity are analyzed with the aid of Ising model, Bogolyubov
method, within the framework of nseudo-Yang-Teller effect, with
the aid cf isospin method, etc. In doing so, the authors en-
deavered to trace historical lines of development of model the-
ories, ccnnecvion between them, to compare model theories with
dynemic approach to the problem of ferrcelectricity and to
dra« attention to the similarity of some of their most importarnt
propositions.

Chspter 5 sets forth dynamic theory of ferroelectricity
dased on Ginzburg's ideas develcped later by Arderson, Cochrane
and others. It examines dynamic theory of Bern-Karman crystal
lattices, sets forth the fundamentals cof thecretical groug
analysis of vibration spectra neces.ary for interpretation of
experimental data, and gives resuits of calculations of vibration
spectra of actual ferroelectric crystals. The main attention
is devoted to the connection of ferroelectric transition witl
the loss of stability of crystal lattice relative to one of
its vibrations {"scft mode"), and some of the effects caused
by the presence of "soft mode" are also examined.

Chapter % is in essence a theoretical group supplement.
Its aim is to make understandable to a wider range of reacers
the problems connected with the application of symmetr, theory
and set forth in chapters 3~5§, 15, etc.

Cnapter 7 is devoted to a description of domain su:ac-
ture of ferroelectrics. Causes of the fcrmation of domains
are analyzed. Representations of domain walls are braeizy
examined. A description of domain structure of some oF lerro-
electrics is given and also a description of methods of Jetect-

ing the domain s-ructure.
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Chapter 8 cxamines temperature dependences of spontane-~
Ous polarization of several of the most typical ferroelectrics
and also repolarization processes. Nonlinear electris prop-
erties brought about by repolarization are also described here.

Chapter 9 is devoted to polarization of ferroelectrics
in a weak electric field. It discusses temperature dependences
of sperific inductive capacitance and losses, nonlinearity in
paraelectric phase, reversible characteristics, and dispersion
of specific inductive capacitance.

Electromechanical properties of ferroelectrics are ex-—
amined in chapter 10. Genersl relationships connecting piezo-
electric coefficients with electrostrictive ceefficiente.
spontaneous pelarizacvion arnd dielectric susceptibilities are
derived for ferroelectrics not having piezoelectric effect in
paraelactric phase. A description of electromechanical prop-—
erties of barium titanate and triglycine sulfate is given.
Electromechanical properties of ferroelectrics having piezo-
electric effect in paraelectric phase are discussed using po-
tassium dihydrophosphate and Seignette's salt as an example. Ex-
perimentai data on internal friction and avsorption of ultra-

kY

sound in ferroelectrics are briefly cited at theadoftw chapter.

Chapter 11 is devoted to elzctrcoptical and certain
other nonlinear optical phenomena in ferrocelectrics. General
cancepts of such noniinear optical effects as electrooptical
effect, generation of harmonics, and of their characterlst}cs
in ferroelectrics are given in this chapter. Data on nonllg—‘
earr optical properties of the principal ferroelectric matsrials
are cited.

Thermal properties of ferroelectrics are described in .
chapter 12. Thermal anomalies 2t the Curie point ari examina4
using several compounds as an example, and a few -- for the
t.ime being -- experimental data on thermal ~onduction and
electrocalorific effect are cited.

The effect of external actions {(of e ES .
hydrostatic pressure) on ferroelectiric phase transition is

~
2

discussed in chapter 13.

Chapter 14 describes studies of ferroelectrics using
the methods of electronic paramagnetic, nuclear magrietic and
nuclear quadrupole rescnances, and with the aid of Mss§bauer
effect. An idea of physical parameters determined bi Lheie
methods is given. Results of investigation of a number of
ferroelectr2cs are cited.

Chapter 15 is .devoted to the studies of vibrations of
the crystal lattice of ferroelectric:s near Curie temperature

-5 -
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using the infrared spectroscopy, Raman effect, inelastic neu-
tron scattering and thermal dlf;us1on scattering of x-rays and
electrons. In doing so, the main attention is devoted to in-
vestigations in which data on ferroactive low-frequency vibra-
tions of the lattice were obtained.

Chapter 16 describes the features of ferroelectrics with
a blurred phase transition. Transitions of this kind were found
in many ferroelectric substances, in particular in a number of
ferroelectric materials used in practice.

Chapter 17 examines the properties of antiferroelectric
compounds and solid solutions. HMuch attention is devoted to
antiferroelectrics with a structure of perovskite type. The
concept of antiferroelectricity is discussed.

Chapter 18 is devoted to a comparatively new class ¢f
sutstances -~ ferroelectrics with magnetic order. The main re-
sults of phenclogical theory of ferioelectrics-ferromagnetics
are given znd three groups of ferroe’ectr1cs Wluh magnevic or-

deredness are examined —-- perovskites, hexagonal manganites
and boracites.

Chapter 19 gives a survey of properties of ferroelectric
oxides, halides, and gnalfogevonqxxﬁes. Crystalline and domain
structures, characteristics of phase transiticns, dielectric
polarization, piezoelectric, 1aQt1c, thermophysical, optical
and electrooptical properties are described.

Foreword and chapter 1 were written by G. A. Smolenskij;
chapter 2 -~ by ¢. A. Smolenskiy and V. A. Isupov, chapters 13-t
-- by R. Ye. ?asynko" and M. S. Shur, chepters 7-10, 12 and i3
— by V. L. Bokov, chapters 11 and 15 -- by G. Al §mole§sxly
and d. N. Krayr 1{, cnav;ers ik and 17 -- by N. N. Kraynix,
chanuer 18 ~-~ by G. A. Smolenskiy and V. A. Bockov, and chapters

18 and 19 ~-- by V. A, Isupov.




.t

"\:}v"»\; |‘ A

CHAPTER 1. BASIC CONCEFTS OF FERRCELECTRICITY PHYSICE

Seignettcelectrics [called so by analogr with the prop-
erties ci Seignette's salt; see Translator's Note in frontl s
the term used to> call crystaliline substances in which sponﬁanem
ous polarizaticn occurs in a certain temperature range in the
absence of an sxternal electric field and mechanical stresses.
The direction of this polarization can .be charged by an electric
field and in a number of cases by mechanical Stresses. As a
rule, seignettoelectric crystals are divided into separate re-
gions (comains) characterized by the direction of spontaneous
polarization.

With a rise of temperature, seignettoelectrics undergo
a phase transition accompanied by the dicappearance of spontane-
ous polarization and by a change in the symmetry cf the crystal
lattice. Temperature at which a phase transition takes place
is called Curie temperature {T .} regardless of whether this
transition is of the first or Second kind. This transition
may be brought about by a change in mechanical stresses and
electric field. A high susceptibility of a seignettoelectiric
in regard to various physical influences (temperature T, nechan-
ical stresses #4k, electric field E) is usually observed nedr
a phase transition. Tor the same reason the dependence ol seign-
ettoelectrics' polarization on T, 63, and i wmay have a non-

linear character. In classical pyroelectrics {tourmaline, etc.)
no such phase transition exisis and the respective dependences
are practicalliy linear.

Seignettoelectric properties were discovered for the
first tiwe in Seignette's salt from which this name rlglnated.
The term "ferroeleciricity"” which underscores analogy with
ferromagnetism is used in foreign literature more often [1, 2].
However, titis analogy exists only in the purely phegomenolgglc?l
scheme. The microscopic rature of these phenomena is compieteiy
dissimilar. L(Except to draw +he distinction as above, ;hg tians~
lator has been and will be using the terms "ferroelectiriciity
and "ferroelectric" to conform to the English-language sources).
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Spontaneous polarizaticp (PS) occurs in classical pyro-

electrics and in ferroelectrics owing to a displacement of ion
sublattices or ordering of atomic groups having a dipole moment.
In doing so, ions responsible for the appearance of Ps in f'erro-

electrics are displaced comparetively ecasily (dipole groups
change the direction of electric moment). It is precisely owing
to this that ferroelectric phase transition proves to be - 1S—
sible. 1In classical nyroelectrics such ions or dipole groups
are rigidly fixed in the entir: temperature range of existence
of solid state. In this case, external elsciric fields and
mecharical stresses are unable to reorient spontancous nolar-
ization. 11 is helpful to note that ferroelectric substances
with very high Curie temperature approaching the melting points
are known at the present time, for exampie LiNb0,. etc. Thus,
the "hardness" of some ferroslectrics is also ve;y great and

in properties they approach classical pyroelectrics.

Phase (including ferroelectric) transitions are subdi-

vided into transitions of %he first and second kind *). Sec-
ond derivatives of the thermodynamic potential. speciiic in-
ductive capacitance, thermal capacity, coefficient of linear
expansion, moduli of elasticity, piezomodulus, etc. sharply
change in phase transition ¢ the second kind. Ir addition to
a sharp change in these guantities, first derivatives cf the
thermodynamic potential such as spontaneous polarization and
entropy undergd a jump in phase transition of the firsv kind,
and latent hneat of the transition is released.

Temperature dependence of the specific inductive capac-
itance, more e«xactly of susceptibility above ferroelectric
transition, 's described by Curie-Weiss law:

c (1.1)

IWF -

Here C is Curie constant and & -- Curie-Weiss tem-
perature. Hence, by anslogy with magnetism the nonpolar phase
is ofter called parzelectric. In some casas it is necessary
to take into account the additional term £n which actually

does not depend on temperature, and then

C a

sttty (1.2)
In phase transitions of the first kind the temperature
- 0) is usually of the order of 100,

of transition Tc>9; { c
1

i
T
snd in phase transitions of the seccond kind T€=G (Figure i.1)

The behavior of ferrcelectrics btelow Curie point is de-
iermined to a considerable degree by their domain structure.

*) Iranslator's note: English-language sources use the
term "first and second order transitions®.

-8 -
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Figure 1.1, Temperature dependence of
inverse dielectric susceptibility 1/%
(the curves 1) and of spontaneous polar-
ization Ps (the curves 2) in the case
of transitions of the first kind {a) and
of the second kiad (b}.

The causes of the formation cf domains may be qualitatively ex-
plained in the following manner. If a homogeneous crystal is
spontanecasly polarized, then the charges appearing on its sur-
face create an electric field (this field is called a depolar-
izing field). Breaking up of a crystal into domains, i.e. into
regions with different directions of spontaneous polarization,
decreases the depolarizing field and, consequently, the energy
connected with it, and is, therefore, advantageous from the
standpoint of energy. However, with the breaking up of a crys-
tal into domains snergy necessary for the formation of domain

walls increases and, thus, the domain structure is determined
by "energy compromise" beiween these two factors. 1In a more

rigié examination the effect of mechanical stresses has to be
taken into account.

In ferroelectrics the thickness of the boundary between
antirarallel domains is small; it does not exceed a few inter-
atomic distances while the boundary erergy is high {energy den-
sity of the boundary layer is of the order of 10 ergs/cm?). In
particular, ferroelcctrics differ in this respect from ferrc
magnetics ir which the thickness of the boundary layers betw:en
the domains reaches tens and hundreds of interatomic distances.

A rearrangement of domain structure takes place in a
multidomain crystal under the effect of external field. 1In

this nrocess, spontanecus polarizaticn changes its direction
ir a ecertain volume of the crystal. The process of reorienta-
tion of spontaneous polarization is accomplished by mearns of
motion of domain walls and also by means of formation and in-
vergrowth of nruclei of new domains with a direction of‘qugta:
neovus polarizaticn approaching the direction of electric field.

-9 -
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Figure 1.2. Schematic representation
cf dielectric hysteresis lcop in 2 ferro-
electric.

In sufficiently weak fields, polarization linearly de-
pends on the field (Figure 1.2). Processes of reversibie dis-
placement of domain walls predominate on this section. With
an increase of the field, the formation of nuclei of new do-
mains begins and displacement of domain walls becomes irreverc-
ible, In doing so, polarization increases faster than in ac-
cordance with linear law.

At a certain field strength corresponding to the point B
the crystal becomes a single-domain crystal and the so-called
saturation is reached. With a further increase of the field
the total polarization of the crystal continues to increase
only owing to an increase in induced polarization (the section
BC) which is especially high near ‘he phase-transition point.
The curve OABC is often called the initial or fundamental branch
of hysteresis loop. If after reaching the saturation the field
strength is decreased, the polarization of the crystal will
change not in accordance with the initial curve but in accordance
with the curve CBD and in the case of a field equal to zero the
crystal remains polarized. The magnitude of polarizaticn de-
fined by the line segment OL is called residual polarization.
Extrapolation of the section CB on%z the Y-axis cuts off the line
segment OK which is approximately eyual to spontaneous polar-~
igation. If the direction of the field is changed, then polar-
jzation will decrease, it will change sign and with a certain
{ield will again reach saturation (the secticn DFG} Field
strength defined by the line segment OF, at which polarization
is eoual to zero is called coercive fiold (Ecj. Thus, relation-
ship of polarization t¢ electric field strength is described by
the curve CBDFGHBC caliled hysteresis loop.

At the present tiwme, a considerable number of ferroelec~
trics are known which represent different types of chemical
compounds: oxides, sulfates, tart.ates and other compounds
having different crystal structure. With respect to chemical
bond and type of the phase transition ferrozlecirics may be ai-

vided into two large groups.




) 1. Ferroelectrics which are mainly crystsls with a con~
siderable degree of ionicity of the bond and which do not con-
tain atomic groups having a permanent dipole momeni. In these
crystals spontaneous peolarization is brought about by a displace-
ment of equilibrium position of anharmonically vibraiiﬂg sublat—
tices of the ions. Inasmucnh as in this case the phase transi--
tion from paraselectric state into ferrcelectric state occurs as
a result of displacement. of ions it is called phase transition
of the displacement type and the crystsl -- ferroelectric of
the displacemenc type. A classical example of a ferrcelectric
of this type is barium titanate. lurie-Weiss constant C for
gpecific inductive capacitance in displacement-type transitions

proves to be large and amounts, for example, for burium titanate
to about 1.5 - 10° °K.

2. Ferroelectrics containing dipole groups iformed by
atoms bound with each other chiefly by covalent forces. These
dipole groups may have a charge. In this case, their bonds
with ions not contained in these groups have chiefly an ionic
character. 1In crystals of this type there arc several possible
equilibrium positions of dipole groups with these positions
corresponding to different orientations of the dipoles. In the
paraelectric region the long-range order is absent in the ar-
rangement of the dipoles but it appears in the ferroelectric
region.

Thus, here the phase transition and appeararnce of spon-
taneous polarization are connected with the orderedne.s of the
dipoies. Hence the names: phase transition of the order-dis—
order type and ferroelectrics of the order-disorder type. In
thic case the value of Curie-Weiss constant amounts approxi-

mately to 103 OK, i.e. two orders less than in ferroelectrics
of displacement type. FExamples of ferroelectrics of the order-
disorder type are potassium dihydrophosphate, sodium nitrite,
ete. It should be noted thac the division examined is approxi-
mate and ferroelectric transitions of mixed type are possible.

This is nct the only method of classifying the ferro-
electrics [1-3]. They may also be grouped according to the
character of phase transition from nonpolar into polar phase
(of the first or second kind), according tc the presence or
absence of piezoeffect in paraelectric ohase, according to the
number of possible directions of spontaneous polarization gunl—
axial and multiaxial), and according % the type of crystes
structure.

Phase transition with a change in lattice symmetry takes
place in scme crystais at certain temperatures. In doing so,
ions of the same kind are displaced not parallel to each other
as in ferrvelectrics but antiparallel to each other. This
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leads to an antiparallel orientation of dipole moments. Such
an orderedness of moments also exists in some crystals having
dipole groups. Crystals wit'. dipole moments ordered in anti-
parallel are called antiferroelectrics. Crystals whose free
energy approaches the free energy of isomorphous ferroelectrics
have been assigned of late to antiferroelectrics. It should

be noted that a noncollinear arrangement cf dipoie moments
which produces a zero resultant polarization is possible.

Antiferroelectrics may be regarded as an assemblage of
two or more S blattices with one being inserted into the other
and with the aipole moments in each sublattice being oriented
parallel to each other. Spontaneous polarization in each sub-
lattice is not equal to zero but the aggregate spontaneous
polarization in the crystal proves to be equal to zero. In
the simplest cases the crystal lattice in an antiferroelectric
has a center of symmetry and the piezoeffect is absent. A
maximum of specific inductive capacitance the magnitude of
which is smaller than in ferroelectrics with the same crystal
struciure is observed at the point of transition. A multiple
increase of dimensions of unit cell is usually observed in a
phase transition from paraelectri¢ state into antiferroelectric
state. In Figure 1.3, in paraelectric region the unit cell is
represerted by the squares abcd whereas in antiferrcelectric
vhase the unit cell is represented by the rectanglz abef.

[ d f___T__1
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s S S
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Figure 1.3. Schematic representa-
tion of dipole moments in an anti-
cLr

When a sufficiently strong electric field is superimposed
the antiferroelectric mey change into ferroelectric state. The
fact is that parallel orientation of dipole moments in the pr
ence of an external rield may prove to be more advantageous
from the standoocint of enrergy than an antiparallel orientaticn.
with such a "forced" phase transition, "double" kwsterecis
loops are observed in a strong variable field (Figure 1.4).

Ir the case of a small field strength, polarization ve. field
dependence is practically linear. Transition into {errcelec-
tric state occurs whzn field strength reaches a critical mag-
nitude Eopr 1. With a decrease of the field strength the
crystal returns into ferroelectric state but with an Eep 2
which is smaller than Eer 1.
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Figure 1l.4. Double hysteresis
loop.

_ Incomplete compensation of dipole moments of the sublat-
tices may occur in more complex cases. By analogy with ferro-
magnetics these substances are called ferroelectrics,

According to the present-day concepts which are based
on Ginzburg's ideas [4] developed later by Anderson [5], Cochran
[6] and others, ferroelectric transition of the displacement
type takes place owing to the compensation of effective force
censtants corresponding to the long-range dipole-dipole forces
and short-range repulsive forces. With such a compensation
the frequency of optical oscillation of the lattice reaches
anomalously small values, the crystal loses stability relative
to this oscillatign and a ferroelectric transition takes place.
On the basis of these theoretical concepts and also on the ba-
sis of an earlier model of an anharmonic oscillator [7-9] it
wae possible to formulate certain qualitative considerations
which were used for finding new ferroelectric crystals, chiefly
of the oxyoctahedral type. It is obvious that dipole-dipole
interaction will be the stronger the larger the interncl field

in a crystal, and also the higher the electronic and ionic
polarizability.

Calculations have shown that in crystals containing oxy-
gen octahedrons arranged in a certain manner the internal fields
are large [8, 10, 11]. Thus for example, connection of octa-
hedrons with their apexesy the way this occurs in structures of
the perovskite type, lithium niobate and potassium-tungsien
bronze is opportune. Oxygen cctahedrons containing ions of
transition elements which have a noble-gas shell after yielding
the s- and d-electrons ar~ characterized by a high electronic
polarizability. It is assumed that a 1oige number of electronic
states with like energies [12, 13] z.d a relatively small size
of the sli: between the filled p-region of oxygen and d-region
of conductaice [14-16] are characteristic of these octahedrons.
Upon superimgasition of electric field the small size of_tpe
slit between -region ant d-region ensures a high probability
of transition ¢f electrons to an excited state and a high elec-
tronic polarizaiility of the cctahedron.
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An important role is played not only by electronic po-
larizability of an oxygen cctahedron in perovskites and in
crysta s of some of the other structural types but also by the
polarizability of ions located between the octahedrons. The

PB3+ and Bi3+ and apparently the T11+_ions are characterized
by high electronic polarizability [17]. Accordingly, many
compounds containing Pb%+ and Bi3+ ions are ferroelectrics
with high Cur2e temperatures.

A number of authors have voiced a supposition that loose
packing of ions in crystzls contributes to the appearance of
spontaneous polarizability. An excessively great significance
was ascribed to this factor in early works.

The semiempirical crystallophysical considerations ex-
amined above which are useful in the search for new oxyocta-
hedral ferroelectrics were formvlzted in the works [18, 19].
They played an important part in the discovery of new ferrco-
and antiferroelectrics and also of substances with a high spe-~
cific inductive capacitance.

A number of ferroelectrics have been discovered recently,
for example, YMnO, in which minor cations have no electron
shell characterisfic of noble-gas atoms. 1In addition to this,

cations do not always have the coordiration number six, for
example in Mn>t and YMnO. the coordination number is equal
7

to five. Thus, the criteria in question for the appearance
of spoantaneous polarization in crystals of oxyoctahedrual type
cannot be considered as general criteria. Therefore, an im~
portant problem is the further clarification and more exact
determination of conditions for the appearance of spontaneous
polarization for this troad class of substances. In searching
for ferroeleztrics the guide used is first of all considera-
vions of the existence of hydrogen bonds in crystals and of o
groups havirg a large dipcle moment in crystals (ﬁo?, NOB’ S0

E‘ r

SeOf“, etc.).
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CHAPTER 2, CRYSTAL STRUCTURE OF THE MOST IMPORTANT
FERROELECTRICS

Par.

1.

This chapter gives a brief description of crys-
tal structure of those ferrcelectrics which will
be chiefly used as an example in the discussion
of ferroelectric phenomena in the subsequent
chapters. Among these ferroelectrics are barium
titanate, Seignette's salt, potassium dihydro-
phosphate, triglycine suifate and sodium nitrite.
Crystal structure of the other ferroeiectrics is
discussed in a survey of properties of ferroelec-
iric crystals. Crystal structures of antiferrc-
electrics are discussed in chapter 17.

Barium Titanate

Figure 2, . Crystal stru.ture
of perovskite type.

a -- unit cell; b -- framework
of octahedrons.

Many ferroelectrics crystallize in a sfrajture o1 perov-

skite type characteristic of -2, compounds with a general
chemic2! for.:la AL, where A and B are cations and X° -- anions.
s
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A structure of perovskite type is constructed of BX6 octa-

hedrons connected with each other by vertices {Figure 2.1).
Connection of octahedrons takes place in such a manner that
rectilinear chains of octahedrons parzllel to each cther can
be differentiated by all of the three mutually pernendicular
axes. Octazhedrons of the neighvering chains are connected

by their vertices. As a result of this, a three-dimensional
framework of octahedrons is obtained (Figure 2.1b). A cat-
ions are located in the spaces between the octahedrons. Thus,
if B cations are surrounded by six X anions. then occupying
th2 enter of the cubo-octahedron the A ions are surrounded by
12 aznions. X anions are surrounded by six cuactions: four cat-
iors A lying at a distance a/V2 (where a is lattice para-
meten in the vertices of the square whose center is an anion,
and two B cations lying at a distance a/2 in a direction per-
pendicular to the sguare made up of A ions.

The crystal lattice of compounds with a structure of
percvskite type: of ferroelectric compouncs in paraelectric
state and of nonferroelectric compounds has in many cases a
cubic symmetry and belongs to the space group Od--Pm3m. 1In
this ca~e the unit cell contains one formulaic unic.

Satisfaction of the fcllowing two geometric ccenditions
ensuring a close packing of atoms and determining the pernis-
$ible dimensicas of A and B cations and of anions is mandatory
for th2 existence of the compound ABX, with a structure of
perovsrite type [17: -

RB and RK

i
with the coordination number (c.n.) 6, an

dius for cocrdination number 12 {8

F n & 1 . H

n tne case ¢l compleX perdvedl
-
L4

. : e
formula may have

hd fal & v
(AL, AL AR B LB L D) X,
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where Zx,-l and Zy =1 (x /O Y5 >0). 1In addition wo
i=1" ¢

this, the following requirement of elgctrlc neutrality of the

crystal must be observed:

s : )
‘2 a0+ 2 Kymgip F 3y =0

(where (i), n (J) and ny are the valences of the respective
ions), and alqo the requirement of the condition:

RAJ-RX

R (. }( nu)
f<tes VZ{R +ﬂ )<lg. 8y ll s |

<bn

where R,= inRA(i) and Rp= Z.v RB(j) These conditions

limit the dimensions of the A‘l) and p(J) ions and the mean
radii EA and Eé. As already mentiond, b;=0.41; the values
of a1y @, and b2 have not as yet been determined exactly but
apparently v is not less than 0.7L; 31G80.73 and a, is not
less than 1.13 (RA were corrected to ¢. n. 12).

If X is an oxygen ion 02 , then by combining in octa-
hedroas the ions with different valences the following groups
of complex perovckite compounds may be obtained.

With nézlz

ABEEEI 0, A BB 0y ABLELIU,. A \Bilbgw vy
A{HRBYY 05 A(BLBEY 0, A(BILBIYI05 A{BS81%)0,,

vrith =2
h ny

81505 A(BIIBY) 05 A (U1°5BI%) Os:
A'B B") 03, A(BI4BI%) 05, A (BJ%BI%) 0.
A(B34BE%) Os. A (BEB%) 05 A (B:,BI%) Oy

A(BIBI3) 05 A(BI'BE) O A (BJB85) 05, A (BI4EI%) Oy,
A(BLBIO,  A(B3BEV Oy A(B](BRIG A(BBI2)0:

Only the AO 5A3 5BMO3 group of compounds can be obtained with

ng=k. (Owing to the small size and, probably, tco high a
charge, 1ons with a valence of 4, 5, etc. cannot be taken as

- 18 -
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ions with c.u. 12). £13 + 23 pt po+
° 3+t . 16+L ) ippa;en ly t?e compounds A035AOéSBO.ABO.603'
+ o+ + + + nl+ o7+

AL 5A3YsBG. sBor 5050 AG, 5AYTsBh sBG 50y and &S sa3*Bo" (B(Y 0,

can also be obtained. These groups exhaust all of the possible
types of complex perovskite compounds. Apparently not all of the:2
types can be realized. In any case, for many of them ihe re-
presentatives have not been found up to the present time.

P It is necessary to underscore that, as a rule, complex

TAS 1Rt { 18]
ormu%as, for example (AXAf_ ) (ByBl—yOB and A{B;BUBI*: /)03,
describe solid solutions. The following may be cited as an
example:

. (N ;Pbyo) (Tiy sNby s) Oy 0.5NANYQ, - 058D TIO,,
(N2o 4Pby,g) (Fag.25Nbe,73) Oy ms0.5NaM30; 4 0 5#bFey,) by 0,

! 4
Pb (Lla/.h'h/‘w%) Oy =g Pb (L, 4;Nby 35) Oy -4- -g. Pb (Liy (W, ) Os.

In the case of the last equality, ccompounds correspond-
to the formulas on the right apparently do not exist. However,
solid solutions may exist even in this case and a phase with
perovskite may be obeerved in a more or less wide range of val-
ues of the concentrations. Whether the compound Pbl/3(Lil/3 x
x Nbl/BV!l/B)O3 exists in tuis case can only be determined from

the form of the phase diagram of the system formed by two com-
binations of oxides that are on the right in the last equality
(for example, from the prescace of a maxiwum on the liquidus
curve). A compound of pzrovskite type cannot, by far, form
with any combinations of ions satisfying the formulas cited
above. The tendency of the ions to the formation of these or
other hybrid bords leads to this or other oxygen encirclement.
It may turn out that the preferable oxygen encirclement wilil
not correspond to the encirclement of atoms 1in a structure of
perovskite type.

Rarium titanate Ba’i“iO3 is the most investigated rerro-

electric with a structure of perovskite type. Above Curie
temperature (12G°C) this compound has a cubic lattice with a

lattice parameter of ﬁdhﬁo. In this case the coordinates of
the atoms of Ba are:(0, 0, 0), of Ti: (3, %, %), of 30: (%, %,
0), (%, 0, %), (0, %, %). Below 1200C barium titanatesbe-~
comes tetrogonal with the lattice parameters a=3.992 g and

c=4.036 ® at room temperature [4] and balongs tc the spuce
group Civ- PLmm. The lengthening o the cell's edges takes

place in the direction in which spontanedus po%arizatiqn oc-
curs (along the c axis)(Figure 2.2t). Ccordinates oI the
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Figure 2.2. Unit cell of BaTiO

in different phases. 3
a -- cubic; b -~ tetragonal; ¢ ~—-
rhombic: ¢ -- rhombohedral. Berok-n

lines show the initial cubic cell.
Arrovhead indicates the direction
of spontanecus polarization.

Figure 2.3. Displacement cf ions
in a tetragonal BaTiOB.

a -- distortion cf TiO3 octahedron;

b -~ directions of the displacements
of icns in a unit cell.

atoms may be described in the following manner:

t 11 1t 1
Ly:(0, 0, 0), Ti:(;.;.-z—-i—ssﬂ . 0::(‘-;-'5.8:9;).

i \ LR
20,;:(-5-. LY +lx°"), (0. 7.7t *’a“)'

The quantities 82 represent here the displacements of atoms
from the center of parallelepiped formed by barium ions (Fig~
ure 2.3).




An exact determination of the displacaments if ions is
difficult owing to a2 strong connection between the magnitudes
of displacements and parameters of thermal vibratioas of the
jons [ 4). However, as Megaw [5] points out, the average mag-
nitudes of the displacements of ions and of the parameters of
thermal vibrations determined in various works satisfactorily
agree with each cther both in the signs and in the order of
magnitude. Thus for example, the average magnitude of 25 =

I
=£.014, (expressed in fractions of lattice parameter), and the

avevage deviation from this magnitude in the works of differ-
ent investigators amounts to 0.000,. The average 8z01=—0.0255

and the average deviation is €qual to 0.0023, the average SZOII=

= 2
=-0.01 3

and trhe average deviation amounts to 0.0082. It may
be seen from these figures that the values of ) Zmy and & 24

I
obtained in different works agree well, and there is no satis-—
factory agreement only for SZOII.

A phase transition from ferroelectric tetragonal to ferro-
electric rhombic pnase takes place near 0°C. In doing so,
spontaneous polarization sets in in the direction of .a. diag-
onal of the face of the cubic unit cell and the lengthoning of
the lattice takes place in this same direction. The cell ac-
quires a monoclinis distortion (Figure 2.2c¢c). The rhombic
cell a vransition to which from the monoclinic cell is possible
has the p.rameters a*va,V'Z, b;zafoﬁ, t=cy where 2y, by and ¢y
are param.ters of the monoclinic cell, and no longer contains

only one but twe formulaic units. The lattice symmetry is de-

siribed by the space group C%%-—CEmm.

At -10°C the parameters of BaTiO3 are equal to: a=5.682,

b=5.669 and ¢=3.990 ﬁ, The pesitions of ions are determined

by tke displacements &8xm., & Xy » 8 ¥ (Figure 2.4a). Ac~-
Ti OI CII

cording te the data of neuirnn gi tfraction study [61 SxTiz

=+0.010, &x, =-0.010, &x, =-0.013, 8y, =+0.03 or expressed in
Oy Ory 011
angstromiz Sx,ri-:0.0é, 3x0r=-0.06, Sxo =-(.07, Syo =

==0.017 A. The ions of Ti ana Ba are djisplaced relavive to
the oxygen octahedron by 0.13 and 0.07 & respectively along
the positive direction of th2 x-axis. Distortion of the octa-
hedron may ove seen from Figure 2.4b. Spontaneous pelarization

calculated on the Basis of ion displacements is equal to 16 °*
+ 100 coulombs/cm< (experimental value is 30 . 10=6 c¢/cm?).
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Figure Z2.4. Displacements of ions
in rhombic BaTiOB.

a --directions and magnitudes of dis-
placenents; b -~ distortion of Tioé

octzhedron (after Shirane et al. [é]).
1 -~ oxygen; 2 -- barium; 3 -~ titanium.
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Figure 2.5. Temperature dependence of

latevice parameters and of the volume V

of unit cell of BaTiOB. (After Kay and
Vousden [7]).

I -~ cubic phase; Il -- tetragonal phase;
III ~- rhombic phase; IV -- rhombohedral
phase.
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Transition into ferroelectric rhombohedral phase takes
piace at about ~90°C. In this phase, spontaneous polarization

2 is oriented along the volume diagonal of the cubic cell and
3 the cell is elongated in this directiun (Figure 2.2d). The
B rhombohedral phase of barium titanate is described by the

space group C§V-~RBM. At -100°C the lattice parameter a=
=3.998 A [3].
Temperature dependence of lattice parameters {of the

length of unit-cell edges) is shown in a wide temperature
range in Figure 2.5.
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Par. 2. Seignette's Salt

Seignette's salt is a double sodium-potassium tartrate
NaKChHhoé . tho. In nonferroelectric state (above 23—2&00)
this salt has rhombic structure. At +35°C tke lattice para--

meters are equal to a=11.878, b=14.246 and ¢=6.218 2 [3]. The
unit cell contains 4 formulaic units. In doing so, the lat-

tice is deccribed by the space group D%’*P21212. According

to [3] the atoms in the unit cell occupy positions shown in
Table 1.

Table 1

Positions of Atoms in z Unit Cell of
Seignette's Salt

Arent = y ’ Arow r F) -
K’ 200 | 000 | 005 om 04 | o068 | o050
3 (sb) 000 | 0% | o015 %.c g; 025 | 0w | om
Na 03 | o | 052 | 1,0 o4 | 030 | oo
ow 01z | of0 | o3 | B0y | o042 | 0% | 045
0 0z | o2 | 012 | Cc() 045 | 018 | o0
0 o3 | o4 | o2 }c@ 042 | o038 | o042
ol o008 | o3 | o085 ] G 0.47 021 | o085
o 3 o46 | 026 | 032 ] c® 015 | 035 | om
OH (8) 022 | 0% | o8

G«
e Nz
e ¢
or
O Oumin
O #o
&

Figure 2.6 Projection of the structure of
Seignette's salt onto the plane (001).

Figures in circles are the numbers cf the
atoms; figures near the atoms indicate the
z coordinates (after Beevers and Hughes [8]).
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Projection of the structure onto the planz (10U) is
shown in Figure 2.6. Each atom of sodium is syrrounded by a o
group of six atcms of axygen with an average distance of 2.39 A

0

(2.39, 2.34, 2.29, 2.31, 2.49 and 2.52 A). Out of them, three
atoms of oxygen belong tc the tartrate group and three —— to
the water molecules. An atom of potassium ip (0, O, 0.05) has
a coordination number 4 with two atoms of oxygen from the tar-
trate group and two -- belonging to the water molecules. The
other potassium atoms have a coordlnation number 8 with four
oxygens from the tartrate group and with four water molecules.

> - - Al o
The distances lie in a range of from 2.75 to 3.07 A. Carbon
atoms in the tartrate molecule lie in nearly one plane. The

groups -C(OH) + COOH are nearly coplanar and are inclined 60_-:;2O
to the plane of the carbon atoms.

Ferrcelectric phase existing in a temperature range of

from -18 to +2,°C is monoclinic and belongs to the space group
2

02——-P21 [9] with the polar axis being parallel to the direction
of the rhombic axis of [100]. Spontancous deformation consists
of a displacement ¢f 1y, in the plane (100). Owing to this,

the angle between the b- and c-axes differs somewhat from 90°G
(by a quantity of from 1'48" to 3* [3]).

The low-temperature phase of Seignette's salt, stable
below -189C, as well as the high-temperature phase, is described

by the space group D%--P21232 {10]. Some of the atoms in this

phase are displaced somewhat from positions characteristic of
the high-temperature phase. Anisotropy of the oscillaticns of
the oxygen O3 and Og atoms was noted (Figure 2.6) with the di-

rection of maximum oscillatior being parallel to the rhombic
a~-axis. At the same time, oscillaticns of the O ion are most
intensive along the b-axis. Very strong thermel vibrations
were found in potassium atoms.

The most important problem in the study of crystal struc-
ture of Seignette's salt is determination of the positien of
hydroger. bonds in a crystal. As the neutron diffraction
stuty [ 117 showed, crientaticn of hydroxyl group, indicated by
qumeral 5 in Figure 2.6, is of great significance for the emer-
gence nf ferrcelectric state. According to [3) a change in the
orientation of this hydroxyl greup leading to a change in the
directicn of its electric moment prings about a displacement
of protons along *he a-axis and makes the main contribution to
the development of spontaneous polarization. Displacements of
the other icns apparently also make a centribution to sponta-
neous polarization.

~ 24 -

Fosvan




Figure 2.7. System of hydrogen bonds in
Seignette's salt (broken lines) in projec-
tion onto the plane (201). (After Frazer
et al. [11]).

Key: 1 -~ O of the CCOOH group; 2 —— C of
the OH group; 3 -- 0 of the H20 group.,

In Figure Z.7 is shown a system of hydrogen bonds ac-
cording to the data in [11]. This system agrees well with the
conclusions drawn from a study of Raman-effect spectra. It
should be noted that although crystallographic class of rhom-
bic modification ¢f Seignette's salt allows the existence of
two enantiomorphous modifications the Seignette's-salt crys-
tals usually belong to the right-handed form [3]. The most
developed and typical forms are the c-faces {003} and pris-
matic m-faces {110} ; the n-faces _{120}, 1-faces {210f and
b-faces {010} whereas a-faces {100} are very small in most
cases or are abseat zltogether.

Par. 3. Potassium Dihydrophosphate

At room temperature, potassium dihydrophosphahg (KHZPOL)
has a tetragenal lattice with the parameters a=7.453 A gnd c=
6.959 g, belonging to the noncentrosymmetrical group D%d—-IXZd

[6]. Crystals described by this space group are piezoelectr@c.
This unit cell contains 4 formulaic units. The crystal lattice
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Table 2

The Lengths of Bonds in KH2POh gccording to

the Datz in [137, Expressed in A (OH is Oxy
gen With Neighboring Hydrogen)

Bond ?zgmtm? 12K 'K

PoOw (jesuanes |} rssoon| N0
x| Jasssosa| Josssosis| 1R8N
g;_?g } 2508200081 } 25080005 | 33300
ouco | Hmuml amsm) s
o¥x 1422001 | 1413001 | 1433004
g:ga } 289640008 | } 287810003 2334003
ﬁ:ﬁé } 282510008 | | 280820005 | 3334001

Figure 2.9. System of Hydrogen Bonds in
KHZPOA (broken iines) in Projection onto

the tlane (001). (Afit:r Frazer and Pepin-
sky [.4]).
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Figure 2.8. 1Unit cell of KH, PO, cor-

responding to the space grovp IL2D.
(After West [.2]).

of KH2F04 may be dz2scribed by using another tetragonal unit

cell in which the edges forming the square base are dizgonals
of the square face of the cell mentionad above and accordingly

- 0
are V? timas larger (that is a=10.534 A and c=6.959 X). How--

ever, in this case the space group will be Déz——FId2.

Tge arrangement of atoms in a tetragonal unit cell with
a=7.453 A is given in Figure 2.8. The lattice consists of POI+

tetrahadrons of nearly regular form. Potassium ions are located
ir the spaces between tetrahedrons. Each one of these ions Is
surrounded by eight oxygen atoms belonging tc POA tetrahedrons

with four of them lying somewhat closer to “he potassium atom
than the remaining four [13]. In Tabie 2 are given the inter-

atomic distances in KH?POA. Each POh group is linked with

four neighboring POA groups by hydrogen tonas of about 2.4 R

in length. As may be seen from Figure 2.8, hydrogen bonds are
perpendicular to the c-axis and link the "lower" oxyger atoms

in one tetrahedron of POA with the "upper" oxygen atoms in an-

other tetrahedron. The system of hydrogen bonds in KH:ZPOI+ may

- 27 -
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be seen from Figure 2.9 where a projection of the lattice onto
the plane (001) is given. According to [13] the oscillations
of hydrogen atoms have a high anisotropy with the amplitude of
the oscillations being maximal along the direction of the bond.
Hydrogen atcms in paraelectric phase of }{HZPGI+ are statistic-

ally distributed in two positiors lying on a straight line con-
necting the nearest oxygen ato>ns. The distance between these

0

two positions amounts approximately to 0.35 A (difference be-
tween the distances O,~~H and O--ll in Table 2}. Statistical
distribution of hydrofesn atoms in these two pcsitions accounts
for the absence of spontaneous electric moment in the substance.

Ferroelectric phase transition takes place in KHZPOL at
-150°c (123%K). 1In doing so, the lattice becomes rhombic and
belongs to the space group 019--Fdd. An elongation of the unit

2v
cell with the space group IL2d takes place along one of the di~
agonals of the square base and a contrsction -- along the other

diagona% so that a rhombic unit cell with a=10.44, b=10.53 and
¢=6.90 A at 116°K results upon transition to the other axes [3].

Distortion of the unit cell with the space group FLd2 consists
in the elongation of the edges parallel to the b-axis and in
shortening of the edges parallel tc the a-axis. The polar
axis !s oriented along the tetragoral c-axis. The change in

interatomic distances during the phase transition .iay be seen
from Table 2.

The length of the hydrogen bond changes 1ittle during
the phase transition but hydrogen atoms become ordered in such
a manner that in a single-domain crystal all hydrogens are near
the "upper” or "lower" oxygens according to the polarity of the
crystal [3]. The change in the polarity of the crystal is con-
nected with the displacement of hydrogen atoms aleng the dirzc-
tions of hydrogen bond from the "upper" oxygen atems to the
#lower" and from the "lower" tc the "upper". The orderins, of
hydrogen atoms is zccompanied by the displacements of the other
atoms. Displacements of oxygen are very small. Potassium and
phosphorus atems are displaced along the c-axis in opposite
directions relative to oxygen frimewors withdrawing from those
oxygen atoms which the hydiogen atoms approach, i.e. the posi-
tive charge of proton approaching th: oxygen itoms repulses
the positive potassium and phosphorus ions ad  acent te oxygen
atoms. The magnitudes of the displacements o'’ potassium atoms

are evaluated at 0.0L-0.05 & and those of potassium [sicl atoms
0
-- at 0.03-0.08 A [13, 14].

Inasmuch as spontaneous polarization is orienggd along
the c-axis and hydrogen bonds are practically perpend:icular to
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the c-axis it is clear that appearance of spontaneous polar-
ization can be explained only by displacements of heavy ions
along the c-axis. Calculation of spontaneous polarization by
the displacements of ions (ionic component) [13] on the assump-
tion that phosphorus, potassium and oxygen ions have a charge
of +5, +1 and -2 respectively gives a good agreement with the
experimental value oI spontaneous polarization. A good agree-
ment, although with opposite sign of spontaneous polarization,
aisc results with the assumption that phosphorus charge is
equal to +3. Results of the study of KHZPOL vsing the methed

vf 2nomalous scattering of x-rays agree with the assumption
that phosphorus charge is equal to +5 [31.

In accordance with the results of structural investiga-
tions, the data of the study of infrared spectra and Raman-ef-
fect spectra indicate an absence of changes in the lengths of
0--H bonds in the case of a phase transition [2]. This con-
firms the mechanism of transition, which consists in ~rdering
of hydrogen atoms in two positions lying aiong the hydrogen bond
and which follows from structural studies.

Par. L. Triglycine Sulfate

Figure 2.10. Projection of the structure of
triglycine sulfate along c-axis. (After Hosh-
ino et al. [16]).
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Table 3

Coordinates of Atoms in Triglycine Sulfate

Atoms x v .
sultate lon
Hox cyzsdara
8 2.5735 [ 0.2250
o! 08583 0.2447 l 0.605¢
9, 0.2659 0.2457 04512
Oy 1.0920 0.4585 0.2234
04 L0109 0.3469 0.1841
Yocdre ,
o 0.6084 0.23%3
& boosx 02718 05588
C 04905 0.24712 08121
C 0.2361 0.9049
N 0.2140 1.16%
Glveine
Txsaxx i
g 0.2218 0.4975 0.7848
o 0.4396 0.53¢7 0.9988
c 53153 0.533¢ 0.6:97
cM 02615 0.5734 04070
N | ox® 0.5800 0.3083
FMAPE
0 0.7824 0.4931 G
8 0.5454 0.4825 017
N 0.6937 0.4749 0.328¢
C 0.7440 0.4320 0.5506
N 0.9058 0.4331 0.7059

Triglycine sulfate (NH ChZCOOH)3 . HZSOL is a ferroelec-

tric with a Curie temperature of 49°C.  Above Curie peint, tri-
glycine sulfate has a monoclinic lattice belonging to the space

group Cgh-—PZ /m. A unit cell of triglycine sulfate may be

selacted by two methoda. The b and c¢ parameters are the
same for both unit cells but the angles g and parameters "a"
differ. In both cases the unit cell contains two formulaic
units. At room temperature, the lattice oarameters in one se-

lection are equal to: a=9.15, b=12.69, ¢=5.73+0.03 A g =
-105 LO'+20*' according to the data in [15], and in the other
selection a=9.42, b=12.64, ¢=5.73 A. A=110°23" according to
the data in [16].

Coordinates of atoms in triglycine sulfate at 20°C ac-
cording to the data in [16] are given in Table 3 in fractions
of the edge of the cell.

In the triglycine sulfate lattice, phosphcrus atom is
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in a distorted oxygen tetrahedron. The S--O distances lie in
a range from 1.&77 o 1.&91 X and are considerably shorter
than in inorganic sulfates such as KH2804 and MgSOA. The
J--3--0 angles lie in a range of irom 105 to 115°.

in Figure 2.10 is given a projection of the structure
of triglycine sulfate along c-axis. For couvenience in de-
scription differeat gioups of atoms are indicated by the let-
ters A, B, A* and B¥ placed in parentheses. The nuvmerals I,
II and III indicate three glycine groups which are a part of
the composition of the substance,

Glycine group II is a so-called "zwitterion", i.e. a
molecular grcup sne side of which has a positive charge and
the other -- 3 negative charge, so that molecular group has
a dipole moment. Glycine groups I and III carry only cae
charge -- a positive charge and, therefcre, may be regarded
as complex positive ions wnich are called glyciniums. Hence
a second possible name for triglycine s:lfate -- glycinedi-

glycinium sulfate -- and the feasibility of writing tEe chem-
ical formula in the form (NHCH,C00T) (NH3CH,CCOH),SO;™.

Table &

Displacements of Atoms From thg
Planes of Glycine Groups (in A

Giycine groups
Atome 7Ly group

b ¢ l I ur
e 0.00, [- ~0.28, 00
i 00k 0.0, —004,
5 | S5 | - T
¢ —~001, 0,00, "'0-0::

As may be seen irom Table 4, carbon, nitrogen and oxy-~
gen atoms in glyciniums I and III lie practically in one plane.
In zwitter-ion of glycine (II) carbon and oxygen atoms also
lie practically in one plane but nitrogen atom is displaced

G
from this plane by 0.27 A.

In paraclectric state ahove Curie point the plan?s
v=% and 3/£ are crystallographic nirror~image planes. The

planes of glycinium ionz form an 2angle of 12.5% with tée
planes y=% ani 3/k. A glycinium molecule may go out of the

- 31 -
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plane y=% (or y=3/L4) both on one and the other side of this
plane with the direction of the deviation from this plane
being different for each glycinium molecule and being in a
chaotic state. Thug, above Curie point the planes y=% and
y<=3,/i are mirror planes only statistically. With an ordered
deviation of glycinium molecules below Curie point these
planes cease to be mirror planes even statistically.

. Determination of thes system of hydrogen bonds in tri-
gilycine sulfate is of great importance. A possible system of
hydrogen bonds assumed in [ 16] is shown in Figure 2.10 by dot-
and-dash lines connecting different atoms. Attention is drawa
by the shore gydrogen bond between the G}II(A) and O'II(A) oxy-

gens of 2.4%4 A in length. It is assumed in [16] that proton
is located closer to the atom of D'III(A) oxygen of the com-

Qletely.plane glycinium IIT ion. Owing to this, group III
is considered to bte glycinium ion and glycine group II is re-
garded as a gwitter-ion.

The possibility of <he transition of hydrogen from
group III into group II along the short OiII(A)——H-—O}I(A) bonad

accounts for the possibility of repolarization of the crystal.
In doing so, tbhe groups change roles: group II1 becomes a
zwitter-ion and group II -- a glycinium ion. ﬁII(A) atom re-

turns into the plane ol the remaining atoms and NZII(A) atom

leaves the respactive plane. This regrouping of atoms in
these groups leads to a change in the position of giycinium
group which, as a result, assumes a symmetrical position rel-
ative to the plane y=}. Thus, repolarization in triglycine
sulfate is not a simple change in the direction cf the mc~ent

f one of glycinium groups but is connected with the disappear-
ance of the moment in one glycinium group and transf{ormation
of the zwitter—ion of glycine into a glycinium grcup with a
dipole moment of opposite direction.

Further studies confirmed that ferroelectric transition
in triglycine sulfate is a transition of the order—--disorder
type and is in the main of the same nature as the transition
in potassium dihydrophcsphate but differs from it by a tighter
bond between the motion of protons and the motion of heavy
groups [17].

With the phase transition into paraelectric state the
lattice remains monoclinic. In doing so, along the ferroelec-
tric b-axis the crystal contracts during the heating and ap-
oroach to Curie point and begins to expand in paraelectric
phase while, conversely, along the a- and c-axes it expands
during the heating in ferrcelectric phase and begins to con-
tract in paraelectric phase [18].




Sodium Nitrite

Figure 2.11. Projection of the struc-
ture of NaNO, onto the plane (100).

Small circles are nitrogen, medium-
sized circles ~- sodium, large cir-
cles —- oxygen (After Wyckoff [20]).

At room temperature sodium nizrite (NaNO,) has a rhom-
bic structure bhelonging to space group ng-—ImZM [19]. VUnit

é
cell has the parameters a=5.390, b=5.578 and c=570 A [20] and
contains two formulaic units. The lattice of NaN02 may bte

represented as the lattice of MaCl in which chlorine jon is
replaced with NOZ ion with 0--N--C angle equal to 115° whose

bisector is oriented along b-axis of the NaI\TO2 lJattice and

whose plane lies in the plane (101) of the cubic lattice of
NaCl (Figure 2.11). Sodium atoms are surrounded respectively
by six ions of NO3 und the ions of NO, —- by six sodium atoms.
The b-axis is the“ferrcelectric axis.

Approximately at 160°C the noncentrosymmetrical struc-
ture changes into a centrosymmetrical structug . Paraelectric
phase is rhombic and belongs to space group Dzh—-Immm. At

2@500, parametersoof the unit celil are egual tc: a=5.33, b=
=5.68 and ¢=3.69 A,

Above Curie point, oxygen atoms in N02 groups oscillate
along the axis [010] near those positions which are defined by
the centrosymmetrical space group.

With the assumpticn of a purely ionic structure the cal-
culated value of spontanecus pclarizaticn proved to ve equai t0

Th e 10"6 coulombs/cm2 {21]. This wvalue exceeds by one order
the experimentsl value of spontaneous polarization in NaNO,,
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Agreement between the calculated and experimental values re-
sults if a charge equal to unity is assigned to a sodium ion,
to nitrogen ~- a charge equal to -0.36 and to oxygen -- a
charge equal to -0.32 {21%. This irdicates a strong ccvalence
of bonds in N02 group.
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CHAPTER 3. THERMODYNAMIC THEORY OF FERROELECTRICITY

Many physical properties of ferroelectrics are well described by
thermodynamic theory (with the exception, perhaps, of their behavior in
& ravrow temperature range near transition point, and also with the ex-
ception of some noalinear effecrs).

The principles of this theory wera laid down by Ginzburg [1, 2]
and Devonshire [3] who applied Landau [4] thermodynamic theory of phase
transiticns to ferroeleciric crystals.

Thetmodynanic theory makes it possible to describe phenomenologi~
cally therma! mechanical and dielectric properties of ferroelectric crys-
tals, predict possible changes in their symmetry in the case of transi-
tion of the second kind, to interconnect various physical quantities with
anomalous temperature dzpendence, etc.

This chapter sets forth the principles and soe recults of thermo-
dynamic theory, and also examines the gquestion of the range of its appli-
cability. Material preseated in this chapter pertains only to single-
domain crystals. The last circumstance is connected with the fact that
thermodynamic theory of domain structure has been developed cons derably
iess (a brief review of results of cthis theory may be found in chapter 7).

Far. 1. Ferreoalectric Phase Transition

The basis of Landan theory is representaticn of phasa transition
which takes place as a result of 2 change in symmatry and net in che
state of aggregation of a bedy. From the standpoint of macroscopic theory
the symmetry of a system is described by the so-called factor of crdeF
+¥{t, p) whichis cqual to zero iu disordered phase and is nonzero in phases
charactarized by a lower symmetry. For ferroelectric transitions the
order parameter may be provided by spontapecus polarization occurring as a
result of displacement of atouwic sublattices or czdering of astomic or
molecular greups, which brings about the appearance of macroscopic dipole
moment 1),

1) See fostnote on n2Xt page.
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If during the change in temperature the order factor of W changes
suddenly, then s phase transition of the first kind exists, when the sys-
tem permits in a certain region the existence of two phases within which
thermodynamic functions are two-valued. Therefore, with the transition
the state of the system changes suddenly, a temperature hysteresis is ab-
served and, consequently, absezption or reliase of heat takes place.

In the case of a phase transition of the second kind M, as well
the thermodyramic functions, changes continuocusly, but a sudden change is
experienced by their derivatives (thermal capacity, compressibilitv, spe-
cific inductive capacitance, etc.); however no release of latent heat
takes place.

1, Phase Transition of the Second Kind

Suppose the state of a system is descrihed by thermodynamic poten-
tial @(p, 1, M) 2) whick is postulated in the torm of an expansion with
respect to the powers of m, {.e.

Gip, T, qjem®(p, T)+ a1+ AV 4 590 4 Cob 4 DRV 479, G.1)

where coefficients a, A, B, etc. are functions of the temperature T and
of the pressure p.

Inasmuch as the states with an M=0 and MN#0 are characterized
by their symmetry and since at any point with an #%0 near the transi~
tion ¢) mist be minimal, an a=0 should be assumed in the entires range
of temperature variation. It is also obvious :hit in symmetrical phase

»2

¢ .
A>0 in accordanc+ with the condition that -3—--5) >O. Conversely, with
"

an M#0, A<0 corresponds tc the condition of minimum & and C 20. Con-
sequently, at the cransition point itself A5=0. In addition to this, on
the basis of these consicderations Be=0. Attention has to be paid here to
one important circumstance: if in a certain region 5(p. T) vanishes iden-

1) In the general case, lattice symmetry is symmetry of the density
function p(x, y, z) [4] which defines the probability of different prsi-~
tions of particles, including el :wctrons. The last is of basic signifi-
cance inasmuch as a ferroelectric transition does unot necessarily have to
be imagined as a result of disj'acement cf ions. As Jaynes and others
[5, 6] have showm, ’~ principle, ransition may also take place as a re-
sult cf a charge in the symmetry of the function describing the state of
:attice electrons.

2) It is assumed here that in the case of equilibrium (py Ty Wi
has a minimum in relation to the variable m. (p, T, w) is selected in
such a manner that entropy § is connected with {t by the relationship S=
= \37Tl° See Par. 3, subparagraph 2 concerning thermodynamic functions

P
as applied to different external condition:;.
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tically because of the properties of symmetry, then only the condition
Aaxp, T)=0 remains in this case, and a line ¢f phase transitions exists

in the p, T plane. If however; B(p, T) does not vanish identically, then
only icolated points of the phase transitions exist in the p, T piane with
these points being determined from the conditien An(p, ™)=0 and Be(p, £)=0.
We will assume that the conditions B{p,I)=0 and D{p, {)=0 are saris’ied.

Thus, on the basis of the above considerations the expression for
thermody:-amic potential has a form of expansien with respect to the :ven
powers of w

O(p T, RJm Oy (pT) b A4 Oty Frbo . (3.2)

In addition to this, on the basis of the condition o7 minimum (i.e.
L0, ~ e : P - i
AT(Q 9; AT=9=0 and AT_}G > 0) A(T) may be written in the fom of a lin

ear temperature function:

(24,
A(n““\si’ Al -8 {(~.3)

(8§ is Curie point).

Next, from the condition of the minimum }--=0 ve will find

an

A i (24
wem e (Fhe-n. (.4

after which the change in the entropy AS and a sudden changs in thermsl
capacicy Acp with transition are detemmined as fellows

oA
85 s & - 5 =~(-- <3, R
' o7 €41.5)

where S, oud €y are respectively entropy and thermal capaciry in dis-
ordered phase.

Represennations sei torth above and formulas {3.2)-(3.8) obtained
on the basis of thom are made use of in Ginzburg {2} thermouynamic theorv
of ferrcelestricity, TIwmasmuch as sponlaneous polarization Pg kas prop-
erties which are characteristic of the order factor (Pg=0 in disordered
thase and Ps=0 in ordered phase}, the expansion of D(Pg) in -:‘ng absence
of external field E has a form similar to G (fonmla 3.2) 1),

If the field E is nonzero, then total polarization P=PgiP; {P; is polar-
ization induced by the field) is present in the expressicn f{or ¢¢

1) Later, expansion of 41 with respect to induction coeponents B
was made use of in {7,. With E=@, Dg= 4TTPg, i.e¢. expansions of d(r.)
ad @(DS) are quivalent., However, when Z£0, expansion of &) is more
corract. 1t can be shown that the total differential of polerization work
function of a dielectric is (3JUYE4D, and not EdP. The ralative error
when vsice PIP) is of the urder of E/P ov BJE/IP and is substantisl only
when sul:iciently far frem (v D>R) or is in the saturation region P{E).
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On the basis of this, we have:
0..4,+-m+-§-;¢+.... (3.7)

whence the characteristics of ferroelectric wi;h which we are concerned are

detarmined. From the condition %—E =0 and ia—;z)c we have:

2:7 + BB, (3.5a)
20 4-63P1> 9. (3.8b)

In the absence of field the equation (3.82) gives:

Fg-_-g----‘gi(n_r); TN, (3.93)

Plea0; T3>0
(3.9b)

Next, making use of formula (3.5) and (3.6) we will obtain the
following expression for the sudden change in thermal capacity:

.u....(.;):-;-.. (3.10)

Dielectric censtant will be found after substituting the definition

— IE in {3.8a) with account taken of (3.9):

of PS=’§TE
'-H—:;%y: > (3.113)
=
uni-r;'-:(.—_r—": r<n (3.11b)

By analogy with the well known law for permeability m(T) t};% de-
pendences §£(T) have the name Curie-Weiss law and the quantity C= <~ is
+}

e

called Curie constant.

It follows frem the formulas {3.1la and b) that the slope of the
straight line %(T) when T>@ is smaller by one half than when T8

This effect ("the iaw of dyad") is well confirmed by experiments. It
should be uncderscored thar formulae {3.1la and b) are valid if za2mms of

the order of P? a2nd higher, i.e. when Pi<?3 may be neglected in (3.9).

Pi({Ps occurs only in weak fields and at temperatures that are not very
close zo @. Nonlinear effects cannot be neglected ir direct proximity

to 8 even when E are very small.
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2. Phase Transiticns of the First Kind

The relationships P (T), &£(T) and cp\t‘) obtained on the basis of
(3.8) are valid in the case of phase transitions of the second kind., How-
ever; in many cases experimental relationships contain explicit indica=-
tions of transition of the flirst kind., The character of phase transitions
may vary according to the values and signs of the coefficients of expan-
sion of , forming a "continuous gamut® of transitions of the second and
fi+st kind. Indeed, in accordance with theory of phase transitions of the
second kind, in the expression for & (3.7) the coefficient $>0. If
£<0, then we can no longer limit ocurselves to the fourth-order temms (the

contition of minimum & is not satisfied) and, consequentiy, it is neces-
sary to take the terms ~P% into account:

PRSI 3 3 (3.12)
Repeating the same considerations as before, we will finds

p;..g(‘ﬂ/;@). (3.13)

With a decrease of ﬂ the character of the transition srarts to
change and in the extreme case of =0 we have the so-called critical
Curie point below which:

pg-V?u-n (3.14)
.‘:!
c,-r;,-}- 2’1,“/"—_-’10 (3‘15)

and, consequently, at the cmitical Curie point themmal capacity becomes
infinite. Such a phase transitidn is also calied 1 -point.

The law of variation of dielectric constant when T 8 coincides
with (3.11a). However, below Curie point

«..3;{—‘-;5:3.—-.:-:@ r <. €3.16)

in the case under consideration § is ideatrically egual to zero
in a certain region adjacent ro Curie peoint. Huwever, cryctals are aﬂ’.so
possible in which # vanishes at the vuris point itgelf or in its neighbor-
hoods, 1i.e. P=P? (T--9;). 1In deing so, the chavacter of the relation-

ships differs little from the case with & constant ceefficient £=0 that
has been examined. 1}

We will now exsmine a case of phase transizion of the first kind

¢ <.

1) In principle a case is possible when ﬁ{'i‘)-*ﬂ and changes sign
when far from 8, if.e. in the case of finite values of o{7). Appa§eatly
this case is realized in ferrcelectricesemiconducter ShSI wnear T=232K

(Curie point ia SbSI corresponds to a temperature 8r293°1<).
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Both phases (ordered and disordered) are in equilibrium and, con-
sequently, éPs/(}:@P =0 3t the transition point (more exactly, in the
s

transition region since temperatiirz nysteresis is possible) and Pg changes
suddenly. On the basis of equal:ty of thermodynamic potentials and condi~-

tion =5~ =0 we will find that at th: trarsiticn point itself P2 = - }_E .
?Ps sBy 4y

With T= @,, ol does not vanish here. Unlike the phase transition of the
second kind, in this case transition occurs as a recult of the circumstance

that one of the states QP #0 ot Qp =0 becomes metastable. Therefore,
s s

it is convenient to represent the quantity ol in transition region in tha
following ferm

teey 40y (T —0). (3.17)

Making use of (3.17), we will determine £(T):

2= 3918
e T LY (3.182)
«..2—:5;. Tao (3.13b)
39

Tius, the jump at the transition point Af£=—., Latent heat of

the trangition is determined in terms of entropy jump:

‘3.
Qo= 8,38 == 0,030y, . (3.19)

In most of ferroelectrics known at the present time the phase tran-
sition is transition of the first kind approaching critical Curie point.
In particuiar, temperature dependences of o, B and Y (Figure 3.1) cal-
culated in [8] from empirical daca of Meherhofer [9] indicate that pre-
cisely such a transicion occurs near 9=120°C in BaTiO5 single crystals.

Strictly speaking, the case examined here corresponds to phase tran-
sition of the first kind approaching critical Curie point, i.e. o and B
near 'I‘=61 are very small. If this conditien is not satisfied, i,e. ,3(0
and is large in absolute value, then we have a case of sharply marked
phase transition of the first kind. With B <0, very large {F‘ corre-
spond to a typical pyroelectric differing from a ferroelectric (undergoing
transition both of the first and second kind) in that all temperature, pres-~
sure and electric-field dependences are marked extremely slightly. The
reason for this "hardness" can be easily understood if qualitative curves
Q(E, P) shown in Figure 3.2 are compared.

1t is obvious that with the transition from the case '"a" to the case
b the effect ¢f external factors (field, pressure and temerature) will
decrease owing to the build-up of the "activation barrier". At the limit,
transition is not realized at all in tke case "b" and, consequently, the
temperature and nonlinear effects characteristic of ferroelectrics are
absent.
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Figure 3.1. Temperature dependence of
o, f and ¥ for BaTiO3.

‘o £

Figure 3.2. The function &(P) for a
ferroelectric (a) and for a pyroelectric

(b)o

The character of a phase transition depends on many factors: sym-
metry, interaction of atoms making up the crystal lattice, intermal
stresses, etc. Some of them are objecrs of microscopic theory; ochers,
for example, symmetry and elastic effects (see Par. 2 and 3) may be ex-
amined within the framework of phenomenological theory.

3. Range of Applicability of Thermodynamic
Theory and Effect of Fluctuations

Fluctuacions of parameters characterizing the equilibrium of a
thermodynamic system, in particular fluctuations of the order factor m,,
may materially increase near the phase transition points, i.e. during
the rearrangement of crystal lattice. Therefore, description of a tran-
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sition on the basis of representations concerning equilibrium thermody-
namic functions cannot be justified, at least in the region directly
adjacent to Curie point., Assumption of the fluctuations of order factor
requires abandonment of examination of the spatially unifo-m case, and
taking spatial distribution m(r) into acccunt in the expression for Q,
£ i.e.

= Sombyt AN 4 CPR L P Y (rad )., (3.20)

The tem & (grad '\)2 is cailed correlation energy in Ginzburg's
works [10, 11]. This term {s essential not onrly in the descriptions of
fluctuations but also in all of those cases when regions of appreciable
change of w(r) exist.

The range of applicability of thermodynamic theory on the basis of
the expansion (3.20) was examined for the first time by Ginzburg [10]9
His approach was developed to a certain extent by Kadonoff, et al. {12].
The theory in [12] as spplied to ferroectrics is also set forth in the
lectures by Blinc [13].

it e

= Substituting 4 by Pg we will rewrite the expansion (3.20) for
= ferroelectrics limiting ourselves as before to a unidimensional case:

S, T, P) oy p, r;+-(rm+’—(§’~m+s,(mgu¢p;r. (3.21)

Here @ is thermedvunamic potential per unit of volume .
Thermodynamic potential Qv of the entire body is equal to

$,~ gé(r)dv.

; In equilibkrium the quantity @v + SEdeP must remain invari-

= able relative to infinitely small changes
Pt} Be) 4P (1),
In other words it is necessary that

Woe 07 (2P 5 2P) — 2y gradt P —B) dom 0.

= From this we find:

{3.
2P L BPY T radt P am £, (3.22)

With 81=0 the equation (3.22) chauges into the equation (3.8a)
and the results set forth above follow from it.

1) iIu the examination given below we neglect the change in volume.
In this case it is of no difference whether free energy or thermodynamic
potential is discussed.

.
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We will expard the fluctuation of the quantity P
AR () = P (1) ~ P
into Fourier series

AP () T P’V Py Ply,
q

Here the the probability of the fluctuartion AP(r) is proportional

4 (3.23)
where A@v is the change in thermodynamic potential owing to the fluc-
tuacion AP(r).

- - 2
Taking into account that é(? + ApP) - d)(?)=(b;=-§ AZP +

+ §lgrad2AP we will find

.w,.-i [®(P 48P (1)) — & (B)] o mer 3 (20 (T) + Mg2l | P (3.26)
' ]

In the expression (3.24) wz limited curselves o terms quadratic
with respect to q and, consequentlv, it is valid when ¢ are not too
large. Substituting (3.24) into (3.23), we find:

+e
- , - 3,55
181 C_jalp«f"’(lpcn"iPq!-lh(f}-fzmqp. £3.23)

Since in phase transition of the second kind -0, then for long-
wave fluctuations P,~3 00, and consequently neglecting of fluctuations is
impermissible. In phasc transition of the first kind approaching critical
point the value c¢f ol{T¢)# 0 but is small and accordingly the 'ong-wave
fluctuations sharply increase. Thus, Landau theory is inapplicable in
dirvect proximity to the tramsition point.

Specifically, it becomes inapplicable in the temperature region

in which the ineguality
Py~ PHP I} — P (PR, (3. 263

i¢ not sacisfied. This inequality requires that fluctuations of the order
parameter at distances of the order of ccherent length % be much smaller
than the paramcter itself. Therefore, to evaluvate the range of applica-
bility of thermodynamic theory it is necessary co examine the correlation
of fluctuatiens.

-e . N \ J .
#e will introduce the cerrelation function:

{10~ 1P (1)~ PL{P (#) — ).
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The function f(r, r') can te calcvlated by followinn the thasrem of
clagsical statistical walhanics {sec in greater dezail in fiZj} from which
it follows thav a smuil variation of the field R(x) brings aduat chuiges
in polarization P(r):

ie
[T 30 Iy e () ee.
! 2

On tue oXrer liauwd, it follows from Landau theoxy {see 3.22) that

2 F ) 4 PP (1) — 24, SIIBTAP ) o VB (). (3. 28

Substituting the exprucsion (3.27) into €3.28), we find:
S {130 4 P (2) ~m 28y AN 1 {00}~ AT (1= ')} TP 1) o’ ma P, (3.29)

Sincz 4 F {; arbitrarv, the foliswing is necessiary to satisfy the
equalicy (2,.29):
ga <. 628 (r) ~ by gradll (i) 2 &V (7 ~ ),

where 8(r - r'y is Dirac delta fisction,

With TH@ and BE=C, T=9) ard, consequextiy:

[265 (T —6)— 2%, grad?]f (i) v kT (s - ¥}

With T(G and E=0, PSZ‘—- —% rsee 3,10)
[ (0~ T, =22 good¥] 2 () e kT8 g0 =)

Solution of thecs differential equatiocns sas the followirg fora:

-
e S b kT .\
Rl i e (2.30;
where
‘ "l . ot -
<-(;-3;) (Tt T?’-l 3.31)

28\ e
D A 1<)

It is assumed here that r - rf is much farger than lui{tice cou-
stant,

Te may e reeu from {3.71) that ccherent lenczhr ¢ iucrcases as
T~ @Y whan T4 @ where, accarding te Janda. thesry, V=i, When T=8
% becomes infinite and corrzvlatieon hermween fiuctuatisng decreaszs as 1Ur
(see (3.30).




It is of interest to rote the correspondence between the divergence
of the quantity 2 and Curie-Weiss Law. Indeed,

a-.+4s{~“’-;)“..s+%sl(g, ;')au~.-s+-{-:ia. (3.32)

Taking (3.31) into account we will obtain equalities coinciding

2
'"‘+:ﬁr:W >4

...s+;;—@'——_ﬁ- T,

This result indicates how divergence in coherent length brings abeut
divergence in thermodynamic derivatives.

We will introduce the following parameter:

oT L9
Ml M by pat

Then, with account taken of (3.30), (3.31) and (3.10) the condition
(3.26) gives:

11 [
wagm < F

From this we find the following for critical value of ¢ aing
the range of applicabilicy of thermoaynamic theory:

kg (3.32)

L 32xtet)a,

Taking (3.6) into account, (3.33) may be written in the following
fo m:

2 k \8 s
'.&-(’G—ﬁt—zo-a—‘—k-,) : (30."")

8, \%
where )= (—2-;;-5 is coherent length extrapolated to T=0 and Ac¢ 1is spe-
’
cific-heat jump,

According to Ginzburg's evaluations [10] ’D’~10'6 for BaTiO3. 1In
this work the value of 81 (the evaluation of which naturally goes beyond
the {ramework cf thermodynamic theory) is determined for the aggregate of
d?poles whose womeunts change in accordance with the following formula:

P pe'®,

With qd{{l (d is the lattice constant) the energy of such a system

wp"‘-%"{i—(—v’%&}. (3035)




The first term in (3.35) is volume energy and the seccnd -- corre-

lacion energy. It follows frow (3.35) that 51'*4 %% e,

Experimental verification of Landau theory was carried out by means
of checking Curie-Wedss law, It was found [14] that it is observed for tri~-
glycine sulfare, KH2PC4 and upper Curie point of Seignettefs salt up to T,

equal respectively to 2 ¢ 10'4, 3+ 10°% ang 4 ° 10"4. It was found that
near Curie point

ittt (3.36)
with =110.02,

The recsons that 7 is so small for ferroelectrics in comparison
with the crher transitions (for ferromagnetices ‘trle'z) consist appar-
ently in chat spontaneour pelarization is low in comparison with the maxi-
mum possible polarization, when ion sublattices are displaced by the lat-
tice constant.

It should also be roted that evaluations for 51 and (AP2), ob-
tained in [10, 1%1] coirnride in regard to the crider of value with the cor-
responding values determined with the aid of model theeries [15, i6] based
on rep-esentat'~n of a self-cunsistunt effective field (see chapter 4,
Par. 1). In doing so, it provas tn be that in general the condition for
transition may be ctated as a certaln relationskip batween the energy of
fluctuations in the displacemeunts of ions ané electrostat:c energy of fluc-
tuations of thard" (i.e. p=0) sublattices,

The fact that J4udoubiedly there must be a connection between fluctu-
zticns and cond:tiow. determining the transition ¢f a crystal into a rew phas:
is obvious euough since Pg fluctuaces zelative td its equilibrium value
owing to the existence ~f thermal agitaticn of atoms which leads to a 'dis-
ordering”" of the system. With T>»>4 the cristence of fluctuaticans of Ps
means thst tegions with a Pg#D appear and dissppear in nonfarroelectric
phase, i.e. nuclei of a phase with a lower symmetry appear. Conversely,
with T @ regicns with norequilibrium values of Pg appear and disappear.

At ths phuse transition rrint Chese [luctuaticns are reutricted precigely
by “he interaction of atoms, i.e. by the presence of correlation energy.

Indeed, it the temm 31(grad P)2=Q, then aftar the integration of (3,25}
kT

+——_ which becomes in-
2uiv

we will find for fluctuations a quancity 4ap2=
finite when a—0

As we se3, taking nonuniformity into account leads to the result

that AP’ redains a finize quantity alse when T~>8 with iSPz near the
+ 1]
transition point being tfz smsller the higher the quaaticy 81::¢.ed‘,

. _p -7
i.ee the larger the radius of internolecular interaction &~ (307¢ to 10 ")
[ 4109




Fluctuation corrections into expressions for g£(T), cp(T) and com-
pressibility k(T) were determined in [173.

4, Critical Indices in Thermodynamic Theory

Thermodynamic theory as well as model calculations; for exampie
Ising model, etc., predicts that the basic phkysical quantities character-

izing a phase transition are proportional to the quantity (T - O)i'YI
when T~?8. The numbers y; are called critical indices. Thec. indices
predicted by thermodynamic theory for different physical quantities are
given in Table 5.

Table 5
Values of Critical Indices Predicted by Landau
Thermodynamic Theory of Phase Transitions of the

Second Kind

L) Lot | e, - e (5)

sAvwEE LAl Jnd Pars g ANNREY -e.::&
>0 0 0 -
4 <0 Y ~tep P | Bl
' 0 ¥ 0 igl. | Y]
7 >0 0 ~|t |7 Twai
x-(;;_) { <0 0 ~ltrr7' Y=t
) 0 0 |1p—rpenn | g0
!—!ssgu)p:n- { >0 0 ~t venify
mes lrélf i <0 0 ~ep ¥ .-lfy
oy >0 i} ~AP+8 | em0
» i <o 0 ~ASp +8,] €=0
Key: (1) Ph-:-.al quantity (4) Behavior of the quantity
(2) Coherent length (5) Value of critical index

{3) Electric field

Except thermodynzmic theory and two-dimensional Ising model (see
chapter 5, par. 3) none of the thecries could formerly predict the exact
values of zrivical parameters o, o:', ﬂ, Y \,", 3 s V \7' and M
(critical indices are not to be confused with physical quantities which
are indicated by the same lettersj.

A supposition (substantiated by model considerations) was expressed
in a series of works [18-23] and in some of the others that the following
relarionships exist between critical indices:

d
g—anq~¢'udv-dv’—1+2$-1'+23—-2—1_:—‘--B(‘+l) (303":)
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and, cuus, aine critical indices are expressed in terms of two fundamen-
tal quantities characterizing a transition (for example, 4 and M). Here
d 1s dimensionaility of space for the model selected.

The relationships (3.37) are called similarizy relationships.

It may be seen from Table 5 that the relationships (3.37) are sat-
is€ied for themmodynamic theory. Speaking in advance, we will note that
they are also rigorously satisfied for the two-dimensional and approxi-
mately satisfied for the three-dimensional Ising model (see chapter 4,
par. 3}.

. Similarity relationships are of great importance since it “urns sut
(12] that they can provide certain information concerring the behav.or of

a system in "critical region", i.e. in the region of wavelengihs of Fourier
fluctuztion components smaller than coherent lergth, i,e. 1% 1. It
should be noted that siace ;-’oo when T—*§, this critical re'gion extends
up to the longest waves. i.e. up to q~*0.

it is, therefore, understandable that experimental verification of
the relationships is of 2 special interest., However, up tn the present
time, only the index Ys i.e. Curie-Weiss law (see subparagraph 3 of this
paragrarh) has been measured with sufficient accuracy. For the remaining
pnysical quantities characterizing ferroelectrics there has not as yet been
mide a study of the’'r temperature behavior with sufficient accuracy near
the tramsition point and, therefore, such a study remains to be one of im-
portant tasks for the future.

One of the latest achievements in the field of thecretical substan~
tiation of similarity relationships is a work by Migdal [24]. The results
he obtained will apparently make it possible to calculate in the future che
critical indices for some of the microscopic models.

Par. 2. Ferroelectric. Transition and Symmetry of Crystals

Preceding paragraph investigated a unidimensionzl ferroelec-
tric, i.e. it was assumed that spontaneous polarization is characterized
by one component Pg and, accordingly, the crystal has only one ferroelec~
tric axis.

Inasmuch as the basis of Landau theory is representation of phase
traasition con-ected with a change in the symsetrty of the crystal for a
three-dimensional case, it is necessary to find such a geveral form of
notation tor the thermodynamic potential d} which by itself would con-
tain the possibility of different changes in the symmetry of 2 crys:tal
in phase transitions. It is obvious that as hefore, a measure of this
change must be the order facter ¢ and both phases (more or les. sym-
metrical) must satisfy the condition of minimum .

The approach to the description of phase transition from the posi-
tions of symmetry theory ccnsists in that the thermedynamic petential of
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of each phase must be invariant in relation to those symmetry operations
the aggregate of which forms a symmetry group of this phase. In doing so,
trangition into a less symmetrical phase is connected with a disappearance
of one or several symmetry elements, i.e. with a transition of the group
into its subgroup., Therefore, order factor must be connected with symmetry
operations in such & manner that its changes would lead ro corresponding
changes in the number of symmetry elements in the group. This method of
describing the phase transitions was developed by Landau and Lifshits

for phase trunsitions of the second kind [25, 26] and was used lates by
Indenbom {27, 28] for the analysis of possible rcalizations of ferroelec-
tric phase transitionms in crystals belonging to different classez of sym-
metry., In addition to this, it is possible to determine different changes
in the symmetry of a crystal in the case of a ferroelectric transition on
the basis of Curie principle which cosnects a change in the symmetry of a
system during an external action upon it with the syametry of this action,

Both of these approaches are based on group theory the basic prin-
ciples of which are given in chapter 6. A bibliographic reference on 1lit-

ecature devoted to the application of gcoup theory in physics is also given
there.

1. Change in the Symmetry of Crystals in
Phase Transitions of the Second Kind

In a phase transition of the second kind the order factor (for
example, spontaneous polarization) continuously tends to zero during the
approach to Curie point and vanis:ss at the transition point, Howev-z,
the symmetry of a crystal zhanges at the transition point discontinuously
since 1 is possible to show at every moment to which one of the two phases
the body is related. At the transition roint the stares of both phases

coincide and, therefore, symmetry must contain symmetry elements of bLoth
rhases.

In the case of phase transitions of the first kind the order para-
weter changes discontinuously. Two different phases are in a state of
equilibrium at the transition point, Therefore, on the basis cf considera-
tions similar to those set forth .uuve no restrictions can be imposed on
the change in symmetry in the .ase of a phase transition of the first kind.
Of course, it iy possible to attempt to extend such an examination to the
phase transitions of the first kind that are close ta the cricvical point

but it should be remembired that such attempts have no rigorous substan-
tiation,

A method, less geneval but one quickiy leading to the accomplishment
of the aim, is usually employed in the examination of phase transitions
of the first kind. This method consists in that in the expression fer @
only those combinations of coefficients at o ave kept which leave
invarisnt in relation to the operations of pre-set symmetry of the respective
phases. 1In practice this was precisely what was done by the authors of
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a3t of the works devoted to thermeodynamic theery, for example in the deter-
wi<. :zicn of @ for the cubic, tetragonal, orthorhombic and rhembohedral
piases of BaTiO3. This method can be connected wi:zh Curie princiole (see
subparagraph 3).

Two important inferences may be drawn from the foregoing for phase
transitions of the second kind, stating them for convenience in terms of
group theory (thesze inferences will be laid down as a basis for zhe further
exposition):

1) symmetry group G of one of the phases is a subgroup of symmetry
group Gg of the other phase;

2) changes in the symmetry of a crys.2l correspond to one of the
irreducible representations of a highly symmetrical phase.

We will explain the sense of the proposition 2, Suppose po(x, y, z)
is a density function defining the distribution of prnbabilities of differ-
ent positiors of atems in a crystal. The symmetry of a crystal lattice is
an assemblage (group) of transformations of coordinates in relation tec
which fo(x, y, z) is invariant. If a phase transition of the second
kind taies place and, consequently, the state of the crystal changes con-
tinucusly, then function p(x, y, z} of the new phase may be represented
in the following form:

Y2 g sdempgiz. g B ;W (e g, 0)

The function §¢ry may be expandyd with respect to the buse func-
tions of irreducible representations of the group fgg:

Yyo= 3 3 elvgl (3.38}

Here n indicates the number of irreducibls representation and |
-~ the number of the lina cf the n-th irreducible representation.

The term connected with that base function which is invariant in
rzlation to all transformations of the Gg group and censequently realizes
a unit irreducible representacion, can be simply included in fﬁ by re-
writing the expansion (3.38) in the following form:

ome 3 X ctoien, (3.39)

The prime shows here that the term corresponding to the unit re-
presentation is omitted.

1) The proof that base rfunctions of irreducikle repressntations
form a complete set of functions is contained in any one of the vourses
on group theory listed in chapter 6.
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Propositiecn 2 weans that two different and two independent phase
transitions aay correspond to two different irreducible repregentations,

In accordance with this, we will henceforth omit the index n
bearing in mind that the irreducible represeatation which i3 connected
with the phase transition under cunsideraticn was left in (3.39).

1 a phase transition of the second kind is examired, then 8§10
when T-»8 2nd, consequeatiy, all values of ¢y must also tend to zero when
T-+& Therefore, we can expand thermodynamic potantial @)(p, T, ¢i) with
respect to the pouers of c¢j mnear Curie point.

WRe will introduce the foilowing notation:

Ziamyy; Tijesd. (3.40)

It follows from (3.40) that:

Set=r. (3.41)

Taking (3.40) and (2.41) into account, we can write the expansion
for thermodynamic potential in the foilowing form:

¢y (p, 7+ FA R D)+ V(. DD (130 Tl T (T (3.42)

Here f(:) i3 an invariart of the k-th order made up of quantities

(31}« 1In the sum over ¢ there avs asmany terms as there are fourth-order
invariants, In writing (3.42) it was taken into account that there exists only

one second~order invariant (E Y%) equal in accordance with (3.41) to
1

unity. Also rtaken Into account was theorem proven in [29] according to vhich
there cannot be more than one third-order invariant for irroducible re-
presantations cof the space groups.

This proposition which was put forth earlier as a hypthesis in tche
monograpk [4] {5 very essential for rkermodynamic theory. 1ndeed if
third-order terms are abseut in tae e: ~ansion (3.42), then condition for
the transition has the form A(p®)=0 and a whole line of phase tramsitions
2zists In the pT plane. 1If a third-order terz is present (see {4}, P 526},
cenditions gafpoG%zb are addea and, consequently, {f one third-order in-
varisni: exigts; then therc are igolaied phase transition points in the
PT plane, which heve not been obsarved up to the present time. If more
thar one third-order invariant existed, then wors than two sguatiorns would
resuly for the detexeination of two quantities p and &, which has no
phesical sense, Thersfore, we will limit nurselves to the csse when a
lina of phease trancitions exists in the pT plane and third-order terms are
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absent owing to symmetry. In this case the expansion (3.42) may be re-
written in the following form:

Sex Pyt Alp. TIN5 TC, (p. T (10, (3.43)

Inasmuch as the second-order term does not contain the quantities > D)
these guantities are determined from the condition 2f minimalness of the
fourth-order terms, i.e. of the coefficient with ' in (3.43) 1), 1f
the minimal value of this coefficient is indicated by ¢(p, T), we will ob-
tain the expansion {3.7). Then the parameter " can be determined from
the condition of minimum 4> (as in 3.8 and 3.9) and, consequently,

Yo X100 (3.44)

The functisns 7y; found in this manner wiil define the change in
symmetry during a phase transiticn.

Up to the preseat time we lumited ourselves to a case of a homoge-~
nepus crystal. In order to examine a heterogeneous, for example strat-
ified crystal; it iz necessary to taken into accouat that @ depends not
{n}
i

only on ¢, ° but ulso on their derivatives with respect to coordinates.

Therefore, near the iransition point, it is necessary to take into ac-
count in the expansion of thermodynamic potential the units of vol-
ume not only of the power of ¢; but also their derivatives with respect
to x, y and z. in order that be minimal without stratification into
regions characterized by different values of <\ varying with the coor-
dinate (as this occurs, for example, during fiuctuations)é it is neces-
sary to rgquire that terms containing space derivatives —gasl or deriva-
tives ck-s—i be jidentically equal to zero im Q. In doing so, the thermo-

dynamic potential of the entire crystal must be minimal, i.e. ¢v= Sédv
v

(minimum @ related to a unit of volume is determined in the case of a
homogeneous =rystal). It is, therefore, clear that after integration the
quantity a"ci, i.e. total derivarives, leads to the appearance of a coen-
stant in the expression for Q, which is not essential in the <deter-
mination of the minimum @v' The same also applies to symmecrical com-
cxmbinations

d; . My @
e.;,-'-+ e,;’-n;(c.eﬂ-&-...

and, corsequently, the fcllowing antisymmetrical combinations are essen-

1) Ouf course, in practice it is not possible to determine the
quantities y; from the condition of minimalness of the fourth-order
term in (3.43) since knowledge of the coefficients Cg(p, T) for differ-
ent irreducible representations is necessary for such a procedure.
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Quantities proportional to (%éi\ s lee. those which tuad to the
\

appearance of correlation energy 31{grad 702, must be essentially posie
tive. However, this does not impose any limitations on ¢y and, conse-=
quently on y;"M, since similar quadratic forms exist for cj, which an
transfoimed in accordance with any one of irreducible representations
(see [4, 30]). Therefore, henceferth we will be concerned first of ail
with the presence in Q of ipnvariants which coatain the follouing anti-
sympetrical combinations of derivatives

P
f‘-’f.

Thus, if a2 case is examined when we have 2 homogeneous crystal it
is necessary to require an absence of invariants ccrresponding to expres-
sions of the following type

o 2 acy ”
e {3.45)

It follows from rhe foregoing that the range of possible changes
in symmetry in phase transitions eof the second kind may be limited by
two requirements, namely: irreducible representation with wkich a phase
transition is connected: a) mest not ailow the existence of a third-order
invariant, b) must not ailow invariants made up of quantities of the fomm
{3.45), 1Irredacible representations which satisfy the conditions a) and
b} are called sctive representations.

It can be shown that ocut of an infinite numbuer of irreducible re-
presentations of every space group ounly a few prove to be active, and
that they can be found by making use of the conditions a) and b) [26, 30].

Investigations in this direction have been carried out for ferce-
electrics in the works [27, 28, 31} and in other woiks.

It {s of intecest to mote that im & number of caces a concluzion
coucerning the character of a phase transition can be drawn on the basis
of theory set forth above. Indeed, if 3 phase transition is connected
with an active irreducible representatioa, it cam be both of the first
and second kind but if a transition is connected with an "inactive" ir-
reducible represeatation, it must be only a trensition of the first kind.

Haking use of the coadition a) and b) Lzidau [4] proved a theorem
avzording to which phase transition of the second kind can exist for
every change in the structure comnectad with a drcreass in the nunber of
syrmetry elements by one half, and expressed a supposition {as yet un;
proven) according to whick phase transittons of the second kind canno
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exigt for changes in the structure, connected with s decrezse in the num-
ber of symmetry transformations by 3 times.

An example of phase transitions with which the number of syrmetry
elements changes by half may be provided by KHjPO4, triglycine sulfate,
Seignette's salt, etc.

But in a ferroelectric (NH3CH3)A1(SO;), for example, the number of
symuetry elements in a space group of low-symmetrical phase is not equal
to one half of the elements in a space group of paraelectric (highly
symaetrical) phase (a group of paraelectric phase e (p23) of ferroelectric
phase C2 (p2)). Transition is connected with a three-dimensional irreduc-
ible refresentation of F. It can be shown that one third-order invariant
exists for this irreducible representation and, consequently, ferroelectric
transition in this crystal is unquestionably of the first kind.

2. Ferroele.tric Transitions in
Crystals of Different Symmetry

Concrete expressions for @(P) as applied to crystals belonging
to different symmetry classes can be examined with the aid of formula
(3.42). As before, we will assume an M ={Pgl. Now [P 1is absolute
value of the three-dimensional vector Pg. Unlike this equality, a dimen-
sionless normalized quantity w is in (.42). However, this should not

n
cause difficulties since the normalizing factor <j5w%—-é> can be intro-
s{ma

duced into (3.42), i.e. into the respective coefficients A, B and C,

{ ?s‘max is maximum value of polarization in the least symmetrical phase

and n 1is exponent of the corresponding term in 4§). On the basis cf
the foregoing we will rewrite (3.42) in the following form:

S TPuse Fopr )= O (T) 4 0 PuPyy i PoiPyyP 4 (3.46)

. P,
b "lﬂ “Poi,ospﬂ + 'uu-'u"u'n’a’u + lelt--’npt_lpﬂpﬂponpn-

Susming is done cver twice-repeating indices. In this expression
the quantitles P , are transformed in accordance with irreducible repre-
sentations of the point group during the action of symmetry operations of
the crystal class in question.

Thus, for cubic crystals (class T and 0) Pg,, Pgy and Py, are
transformed in accordance with a three-dimensiouaf irreducible representa-
tion, and in the case of the sc-called uniaxial crystals, for example for
the class Cuy» Pgy and Pgy they lie in the symmetry plane and are trans-
formed in accordance with two-dimensional representation. Only cne com-
punent cf spontanaous polarization cxists in biaxial crystals (for example,
Seignette's salt, class D). In transitions of the second kind the fifth-
and sixtheorder terms do not have to be taken into account in (3.46), 1In
addition to this, it is necessary to require absence uf third-order invar-
iants since otherwise & has no winimum when T=§ (isolated transition
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points are not examined). Next, inasmuch as a homogeneous single-domain
crystal without stratification is examined an absence of terms of the

P
type PSi_iiii - stﬂi;;il should be assumed regardless of the character
of the transition.

The possibility of existenca in the expansion of @(Ps) of third-
order invariants and of invariants which contain derivatives with respect
to coordinates was determined for crystals of differeat symmetry classes
in [27, 28]. 1t was found that in principle the classes Dp(222), Doys

S4(4) and T(23) allow the invariant PsxPc Pgz. In the class Dy (a biaxial
crystal) the third-crder term is not forbidden in @ by symmetry; however,
it does not play any role anyway since the transition is detemmined by only
one component of the vector Ps (for example, the transition DZH::CZV in
SBSI and Dy 2Coy in KH2PO4).

In the class-Dp4 crystals, upon the appearance of polarization in
the base plane, crystal symmetry also requires the appearance of secondary
polarization al:ng the second-order principal axis. Similar effects should
be observed in the class-S4 crystals (i.e. those having an axis of rotary-
reflectiog of tge fourth order) in which invariants of the type PsxPsyPsz
and Ps:(Psx - Psy) are sllowed in principle.

Invariant PgyPgyPg, is possible in the classes T and Tq (cubic
crystals having no center of symmetry), and therefore phase transitions
of the first kind may take place in these crystals. 1In principle, crys~
tals of the class D3’ Dq;,_and C3p allow third-order invariants of the type
Ps‘(3P§ - ng) or Pgy(3P§y, - PS)). Therefore, if ferroelectrics of this
type exist, a phase transition o¥ the second kind is possible in them
only if spontaneous polarization appears along the third-srder principal
axis, i.e. when Psx=Pby=0.

Invariants reqqgﬁing a st{gtification of the crystal may have the

following form: a) Psx—s%! - Psy"’a"?s and b) P rot Pg; (a more general

oP BPsx .
case). In principle the invariant P c%™ - PSYE;;_ is allowed by the

classes D3, D4 and Dg and, therefore, phase transiticns of the second kind
are possible in them only when P . =P_ =0; Ps,*0, i.e. in the case of
polarization oriented along the princ¥p31 axis. The invariant Pg rot Pg
is allowed by the classes T and O (noncentrosymmetrical cubic crystals)
and, therefore, ferroelectric transitions of the second kind are forbidden
in these crystals. Thus, all crystals having a horizonta! symmetry plane,

i.e. crystals of the class C4hs D4p: D3hs C3p» Dehs Tg and Op do not con-

tain in Q(P) odd-order invariants and invariants with antisymmetrical

combinations .iii° In all of the remaining cases, phase transitions of

the first kind having a number of special characteristics owing to the
presence of odd-order invariants may be observed in uniaxial and cubic
crystals,
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On the basis of knowledge of crystal symmetry in the region P,=0,
the results obtained make it possible to "design' thermodynamic potential
(P) for different ferroelectrics. In doing so, it should be born in

mind that the expression Q(P) in ferroelectric phases, which results

on the basis of expansion of Q(P) of the crystal in the inttial para-
electric phase Is sufficiently corract on the condition that electrostric-
tive distortions of the lattice, i.e. spentaneous deformations when Pg#0
are small, Strictly speaking this approximation is not alvays valid and,
therefore, in a number of cases (for example, in the region of low-temper-
ature transitions in BaTiO3) it rather bears the character of an illustra-
tion since the form of phase transition and even the very ccndition for
its realization may considerably depend on that portion of which is
brought about by electroelastic effects. {(Effect of deformations, mechan-
ical stresses and electrostriction is examined in paragrph 3 of this
chapter). Analysis of expressions for without taking electromechanical
properties of ferroelectrics into account is, nevertheless, not only a
necessary stage in the "“movement® toward a more complete and exact thermo-
dynamical description of a ferroelectric transition but it alsc maices it
possible to obtain formulas for a direct comparison of results of differ-
ent microscopic theories of ferroelectrics, in which electromechanical
effects are not, as a rule, taken into consideration.

Wr. will examine the expansion of Q(P) for some of the crystalse

Seignette's Salt

The region of existence of spontaneous polarization is bounded by
two Curie points: ~-18 and 4249C, Within this region the crystal belongs
to the monoclinic symmetry class C3- In nonferrcelectric region the crys-
tal belongs to the rhombic class D7 and is a piezoelectric (the center of
symmetry is absent}. In accordance with the foregoing the thermodynamic
potential has the tollowing form:

o(r_p.x-.o.m+¢p§,+%ﬂ.+-},—?~u. (3.47)

Apparently Seignette's salt undergoes phase transition of the sec~
ond kind at both Curie peoints [32]. It does not appear possible to ex-
plain within the framework of the expression (3.31) the existence of a
second, i.e. low-temperature Curie poinc, in other words 3 twofold transitiom
&} through zero. According tc¢ representations of a number of authors the
second Curie point is brought about by sti.ng piezoeffect and electro-
striction [33, 34] vhich are not taken iato account iu (3.47). Another
explanation of ancmalous behavior of Py is based on microscopic represen-
tations concerning the nature of spontanecus polarization im Seignette's
salt (see [5, 33-35] and par. 3, chapter 4).

i
-

Triglycine Sulfate (TGS)

Ia nonferroeiectric region TGS belongs to centrogsymuetrical class
Con (symmetry elements -- second-order rotary axis C2 and horfzontal sym~
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matry plane €p). Belos Curic poirc (40°C) the crystal has a lower sym-
metry group C2. Secrad-order momciinic axis {5 rhe ferroe%scttic axis.

Consaquently, third-order invariants and terms of tlae type ):: oust be

absent in the expansion. Thur, pha~u transitien in triglycine sulfate,
as well as in ferroelectrics :somosphous to it ~- trigiycine selenate and
triglynine fluorobarinate ~~ {s desziibed by thermodynamic petential of
the typa £3.47) which does nut forbid phass transition of the second kind.
According to oxperimentzl dats [36, 37). all of these crystal modifica-
tions {ndeed underg« pnase transition of th2 second kind.

Pota ssiuw Dihvdrogen Paosphate Xi;PO4

KipP0, and coepourds isumerphous to it, for example KDPO, and

KHzAs04, be.ong in nonferroelectric phase to the point group Liz2:. After
the transition of the second kind approaching critical point (#=123°K)
KE2P0;, has symmetry Goye Inasmuch 2s polarfzation appears along the prin-
cipal axis 9, the expansion eof é is descril'ed by a formula snalogous to
{3.,47) {(nctation of spontariecus polarization changes te Fgz).

Alum (s famiiy of double nalts with a general formula Hl+33+{R04) .

12 Ho0 vhere M!T is a monovalent metal. M3T -~ a trivalenc metal R-~S,

Se ox Tez

Some of the alums, in particular amsenium or methyl ammonium alum,
belong in nonferroslectric ohase 2o the point group T(23). According to
other data they delong to nonpolar phase C3y [37]. If cubic symmetry T
exisis, then, as noted earlier, existence of the third- and, consequently,
fiftd-order invariants is pecsible in the expansion of £P, with the
phase transitions of ths secoend xind being excluded:

AT, Py e & (1) + € (PL 4 By 4 PL) - 09,00, P, +
1.
+ 3PN+ FYy + PLY + N (PLPY, + PLP, + PLOL) +

A UPLB Py b P PP P, ) 4 I B, P+ PL) 4 1o (FLPL, +
+P:,’L+F.’F:; - P'q?:,+"3~33.+"n?’.,}+71(9&' ’3:' &-'L'),

{3.48)

According to tre experiment, spontaneous polarizatien ¢f aluminum
mezhy: amuonium alum in the phase transition regicm (@1=s177°x changes
discontinuouely clearly oxhibiting the chavacveristics o6f phase transi-
tivn of the firs:z kiand. 1If however, a less symmetrical configuration Cj,
is realized above the tr=msition point, then an expansion with respect
to even powers, that iz of the type {3.47), takes pluce. As it has
already been found, with ¢ certain relationship between the ccefficients
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(p(()) this configuretion alsn lezds to ¢ phase transition of the first kind.

Barium Titanate

At a Curle temperature of 1209C above the transitiom point the crys-
tals of BaTiN3 and in genexal the entire group of perovekites, belang te
the cubic centrosymmstrical class Owe 3Below 8 o120°, the crvstal of
BaTiODj loses the horizontal plane and the center of symuetry ac a result
of phase transition of the first kind and thanges to polar vhase which hss
tetragsnal symmetcy C4ys At T<5°C the crystal hac orthorhombic symmetxy
Czy and at T<{-90°C -~ rhumbohedral symmetry Cyye

Thus, taking the conclusions of the preceding section into account,

we have an expansion in which odd-order invariarts and the term P, rct Py
are absent:

PP Oy (o) 40 (P, 4 P, + PY) -.u-.}p, (P4 5 By + P +

B3 PLPY + P PY o PLPL) 45 1 (P4, + Py 4 PE) -+

TP Py + PLY Pl (PL -+ PL) i P (PY, 4 PL 4 5L PG, PR (3.49)

Gonditions of the minimum thermodynamic poterntial gP =0, Blg; =0
-3 sy
and%rs* =0 give the following solutions for all four phases.
z

1. Gubic phase O  Pgy=Pgy=Pg,=0;
2. Tecrugonal phase G4y  Pgy=Pgy=0  Pg#0;
3. Orthorhombic phase Coy P, 0 Psy=Psz=f=0;

4. Rhombohedrzi ghase C3,  Pgy=Po.=Pg,#0.
Stability conditions for each phase will be fcund as a result of sat-

isfying the requirements in vegzard to the determinants made up of the sec-
ond derivatives of & (see [38, 39]i, i.e.

[l Lad L
.,;:_ _P_,ae 0Py 3004 APegety, |
i £, ¢ ..9:‘.,'! e g s
LG ae PV R T il ot P
73w sl i | N £9 or®
Fa5, F ¥, W,
(3. 30}
If these {nequalities are analyzed with account taken of the wvalues
of in the respective phases, then relationships can be cbiained which
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Figere 3.3. Relarisnship of 22, to T

(in relative units).

)

2
z= ;?i : Plﬁﬁo microcoulombs/cm?;

X 8 Aa_..00n. £ 19g0
t= &0’ §=1i8%: ©,=128%.

make it possible to determine whicl one of the phases is advantageous from
the standpoint of energy in differcnt temperature ranges. The relationship
P2 (T) expressed in relative units ard calculated by Davonshire [3] is
shown in Figure 3.3. In particular, iz follows from chis figure that in
the transition from phase C4, 20 C», the value of Py, decreases apprexi-

mately as 37% and in the transition from phase Coy £0 Cq, =~ aS‘;ig, i.e.

turns, as it were, of the vector Pg(P (100)~AP {110)4P5(111) take place.

All transitions in BaTi03 ars transitions of the first kind. How-
ever, 3 big difference exists between the character of the transitiuns
0y, #+C4y on  one hand, and transitions C4y~»Coy and Cyy~®C3y -- on the other.

Tn the former case, symmetry space group Oh passes into its subgroup in the
transition regiocn as a result of disappearance of the centur .i symmetry

and horizontal refleclion plane. 4&s is known, ia doing so, a phase transi-
tion approaching the critical point takes place and, consequently, even if

the ccefficlents c(?) in the expansion (3.29) do not vanish near the transi-
tion, they may b2 very smail. In the case of low-temperature phase transi-
tions non> of the less symmetrical point groups C3jy, Cyy and C4y of the two
neighbor ing phases is5 a subgroup of a more symmetrical phase although each
onz of thom is a subgtoup of the highly symmerrizal point group Cy. 1In

this case, phase transitions of the first kind take place and the coeffi-
vients c(g) ray 2 comparatively large.

3, Gurie Principle and Tableg of Possibie
Yerroelectric Yraaxitions

As already noted .bove; theory of phzse transitions of the sacend
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kind {uwposcs unly certain restrictions o2 the claas of possible ckanges iu
symartry without predicting exactly precisaly what change in symmetry from
this class will take place with a phase transition. But etrictly speaking.
Thermodynamic theory dens nut impose in general any restrictions on changes
in symmetry in the case of phase transiticns of the first kind-

However, pessible changes in syimmetry can be pradicted fer ferro-
eiectrics in a largs number of cases important fesom practical standpoint
when transitiop parametcr is spontaneous polarization [40, 417 regardless
of the type of transition, 1} curie principls is made use of for this
purvse. According to this principle it is stated that if a crysval under~
goes an external acrion. then it reiains only symmetry elements that are
comnon with the zymmetry of the action,

The following rule for .he deresmina.ion of pussible fervoclectric
transitions {ollows from Curle principle: symmetry group of a {:rroelec-
tric phase must cortain all symmetry elements common for the symmetry
group of poiarlzation vector (or, which is the zame, of any other vecter).
&n additional restriction is imposed on this rule: it is -consideved that
in the case of sucvessive fecroelectric phase tranaitions in a crystal the
symcetry of each ferroslectric phase is connccted not with the symmetry of
the neighboring phase but wiLh the symmetry of paraelectric phase {42, 43]-
In other words, it ir assumed that the structures of all ferroelcctric
phases represent a distorted stiuctuce of the initfal parasiectric phasc
ang that a chiunge in the sywmetry for each one of them t.akes place inde-
pendentiy of the other. In addition to possible syumetry of ferroeiectris
strictures such an gpproach makes 7t possible to alsc show the number of
equivaiant directions of spuntaneous volarization N:

N-ﬂ%:'. (3-51)

where R, and N, are rhe orders of the groups ~f paraelectric and ferro-
electric phases raspectively.

The numbers and possible chanuges in equivalent diractions of P in
ferroelectris transitiois nbtained with the aid of Curie principle are
given in Table 6.

We will examine somz of the concrete examples.

For BaTi03 tre point group of paraeiectric phase *s Op {(m3m), the
voint group of tctragonal phase -- Ty, {(4am), the point group of rhrmbic
phase =- Cy,, (mm2), the point group of triclinic (rhombohedral) phase --
C3, (3=*  The numbers N of the equivalent possible directions of polar-
izatio arc e-n3l to 6, 8 aud 12 reapectivelyr. For KHPCy; che point group
of paratle .iic - "ase is Dypq (32m) and of the feiroeleciric phase --

Cop (=20 T : sber K=2, For triglycing sulfate the group #f paraelec-
tric phase i - (2/m) and of the ferxvcelecirin phase -~ €3 {2}. N=2.

1) Spontaneous polarization is not the enly ctransition parameter,

for exumple in boracite [42], and in general is not a tramsition para-
zeter in the formation of suyperstruciure. Howaver, in the former caie AT
method set forth below may be used after also takizg the vther transition
paramerers int: account {see [17] for mora details),
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Table 6

Possible Changes in Symmetry ir Ferroelectric

Transitions
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Table € (continued)
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Table 6 {continued)
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Key: (1) Miller indices or the (4) Classes of cubic syngony
direction of P (5) Classes of trigonal syngony
(2) Symmetry of paraelec~ (6) Classes of tetragonal syngony
tric phase (7) Classes of rhombic, monoclinic
(3) Point groups of ferrc- and criclinic syngony

electrics and the num-
bers of possible girec-
tions of P

It is easy to see that these ferroelectric transitions (as well as an over-
whelming majority of other transitions) are indeed predicted in Table 6.

All possibilities following from Curie principle are ev-mined in
this table but nothing is said as toc precisely what transitions -ill be
actually realized. Nevertheless, the results given there may prove to be
usefu'!, for example, in searching for new ferroelectrics. A major success
of this "symmetry'" method is, in particular, the prediction of ferroelec-
tric properties in the crystais of NaNOp [44].

Par. 3. Electroelastic Sffects in Ferroelectrics
Rearrangement of crystal lattice taking place in the region of a

ferroelectric transiticn leads to a substantial increase of the sensitiv-
ity cf & crystal to a change in external conditions, in pariicular to¢ the
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application of external electric fields and mechanical stresses. The “pli-
antness' of a ferrcelectric In zegard to the actinn of an alzctric fleld

is described by the relationship E;~&E; which was examined in paragraph 2.
However, this examination bore a one-sided character.

It may be expected that "pliantness' in regard te mechanicsl actions,
i.e, to tiue relationship Cx=Ch Yy {vhere &y is mechanical stress and uy
is deformhtion) and also the "'cross® effects, for example, the relationships
Pi=dj1 ¥, will also exhibit marked anomalies in the transition reygion. Thic
will be reflec.cd in appropriate marner on the behavior of elastic constant
ck( (T) and the piezomodulus dik{T). At the same time, it is clear that
electrical and mechanical properties of a ferroelectric must ha intercen-
nected.

Thus, it is necessary to examine ferroelectric tran:ition with the
electromechanical properties of the crystals taken in account. It is ex-
pedient tc divide this examination into two parts:

1) axamination of electroeiastic effects appearing near the phase
transition points in a free ferroelectric in the absence sf exterral fields
and mechanical forces, in other words, determination of the prcperties of
a farroelectric with spontanecu deformation taken into account;

2) investigation of electromechanical properties of a ferroelectric
in the presence of various electrical and mechanical external actionms.

1. Spontaneous Deformation

In the preceding paragraphs it was assumed that the state of a ferso-
2lectric is determined by temperature. pressure and behavior of the order
factor # appearing in a less symmetrical phase. The quantity m is di-
rectly connected with the componants of spontanecus-polarization vector
(Pgi ~swci) the aggregate of which forms the basis of irreducible represen-
tation of the crystal's symmetry group in nenferroelectric phase. However,
the state of the cystem may be determined not only by the aggregate of the
variables mgc; but also by the set of other variables {uskl\iitk) with
the quantity § appearing like ™M in a less sywmetrical phase. Such a sit=-
uation occurs iu a free (nonfixed) ferroelactric crystal in which, in addi-
to spontaneous polarization Pyj, spontanedus deformaviocn ugk also appears
in ordered state, Striccly speaking, now it is necessary to define anew
the thermodynamic functicns which describe transition when there are two
parameters appearing in nonsymmetricsl phase. It is also obvious that the
complexity of this definition in the presence of even two_parameters greatly
increases, especially if zﬁ}: is a tensor. Inde=d, if is rapresented
in the form of a series for the entire aggregate of the parcmeters wc;
and }Ti. then it is necessary to rake into account not oniy tewrms of the

type (mci)" and {E'Uk)m but also the cross temms {ncy)® ({‘Vk)m (n and m
are integers), If these new terms are sufficiently large with raspect to
the order_of magnitude, then conclusions drawn earlier concerning the sirue-
ture of (for example, concerning the effect of odd-power invariants on
the character of the transition} should be substantiated anew.
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In the examination o a Yunidimensional" approximation of phase tran-
sitions in the prescuce of severa’ quantities appearing in ordered phase it
was assumad in the work [17] that their role is dissimilar, namely, some
are transition parameters while the others are of a secondary significance.
For example, in a ferrrnelectric tramsition the quantity ~w~Pg; is a transi-
tion parameter sirce {L Is the cause of it whercas the quantity } .~ i can-
nol be a tramsition parameter luasmuch as it is a result of the existence
of ~4#0. Arother case 1s also possible when ‘4 ~Pg; 1is no longer a tran-
sition parsmetar, for exampie; if transitien iy connected with a change in the
number ¢f atoms in a unit cell, i.e., upon the appearance of 3 superstructure.
An example of such & crystal is armonium fluoxoberyllate {37, 45] in which
parameters «f the cell are equal to a,.p5™2a; br<@=b and cygg=c. The
appearance of this superstructure is stcempanied by the appearance of spon-
taneous polarization. Anotheyr exemple is @B transition in quartz. Here
2 charaiterizes the magnitude of displacement of several sublattices rel-
ative to eack other without the appearanct of spontaneous polarization.

According to [17], in ferroelectrics the varameter, i.e. the cause
of transiticn, is spontansous polarizatioa Pg~sM whereas spontaneous de-
formation merely accompanies pelarization. The authors substantiate this
statement by the follewing considevations: if a cubic crystal, fo. example
BaTid3, is polarized, then under certain conditions a displacement deforma-
tion mav be obtained whereas the dispiacement deformation itvelf is unable
tc lead in any manner to ths appearance of polarization in a cubic crystal.
The proof shown can hardly be cousidered exhaustive and, in our opinlon,
the gquestion of whether spentanecus deforcation may be a second transition
parameter remzins op2n. Indeed, interconnection between displacement de-
formation and polarization in phase transition in baTiO3 may be regarded
as applied to the phases corresponding to the symmetry C4ugCoy and
CoveC3ve In this case, displacement in the respective pl. ies leads to
the appearance of new polarization components. As regards the symmetry
region Oy Cy,,, not too far from the transition point the respective
elougaticn and compression deformations (see subparagraph 3) displace
the transition into the regicn of higher temperatures and, consequently,
the state with Pg=0 becomcs unstable.

Division of parameters characterizing the internal steady state of
the system into cause and effect is apparently conditional. When discus~
sion concerns the action on the system from without this division is quite
obviocus: application of axternal fie' and external forces is undoubtedly
the cause of the appearsnce of induc. s polarization and deformzation. How-
ever, relaticnships between diffecent intermal parameters, for example
spontanecus polarization and spontaneous deformation, are not so clear.

It may be considered that the aggregate of the variables Bgy ~vmcj and
Ugk "’:,';K forms a multidimensional space the points of which determine
the thermodynamic state of the system. In this case, phase transition of
the second kind will appear if the coordinazes pass thraugh zero at some
of the quadeatic terms of the exparsion of @. However, if the multidi-
mensionality of the parameters Ps and ugy is taken into account, transi-
tions of this type have a complex character and have nct as yet been in-
vestigated in detail. Therefore, henceforth it is postulated but not
stated that Py is the only transition parameter and spontaneous deforma-
tion appears as a result of polarization of the crystal.
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Inasmuch as the system must now be minimal in regard to Pgy and usks
the conclusions drawn in the preceding paragraph regarding the structure of
thermodynaxic functions describing a transition may be retained only on the
condition that electromechanical effects produce little change in the sym-
metry of the crystal.

We will define now the expression for thermodynamic potential with
spontaneous deformation taken into account. Suppose transition parameter
is a three-dimensional spontaneous-polarization vector Pgj~mcy (i=1, 2, 3).
Sportaneous deformation whose components are represented by a row matrix
ugw B, (=1, 2, ..o, 6) appears in the ordered phase. In additien to
invariants containing different powers of faci), powers of ( 2yK) and
cross terms of the type v\g(ci‘t’k); nzz(cicj"rk); q,gz(c{vkci H Q.Zgz(cicjfkﬂ'z))
etc. appear now in the expansion of thermodynamic potential.

We will dwell on these terms in a greater cetail. The quantities
~n{ and 2 are allowed if the substance in disordered phase hus nd cen-
ter of symmetry and, consequently, has piezoelectric properties (for example,
Seignette's salt). Invariants ~‘£ exist for any crystal symietry with
the parameter <%, being transfomed as cjcj if it is a second-rank tensor.,
It follows r~om this that invariants rv‘\} are transformed as a third~rank
tensor and invariants nvg -- as a fourth-rank tensor. We will note that

the terms 1\;1 and 1L2 iz have a higher order than the remaining quanti-
ties and taking tHem into account is necessary only when determining non-
linear dependence of deformation on the field (see par. 3, subparagraph 4).

Taking the foregoing into accourt and passing on from the variables
c@®y and ¢;} to Py, and ug we will find the following expression for
free energy Ap:

Ap(Ts Py mpa)om Ap (T) -+ #4sPiyPoy+ w1giPoiPoyPur + BistaPssPegPetPea +
+Nﬁ-PuPt[PclP'-Pu + 1(,,_’}’“?,1?“?,.?,.?,' + Captiga¥yy -+
+ 3Py + GunPuPiat oo (3.52)

where £, j, L, m, n, p=1, 2, 3; ky =1, 2, +.c, 6.

As usually, summation is carried out over twice~repeated indices.
Determination of the structure of coefficients of the expansion (3.,52) as
applied to the spamerry of a fervoelectric in disordered phase is based
on the following considerations. It is assumed that spontaneous deferm-
tion ugy brings about a slight distortion of the crystal structure af
transition .-to ferroelectric phase and may be regarded as a small dis-
turbance Ap(Pg). Properly speaking, this assumption is already contained
in (3.52) inasmuch as in writing it, terms of higher order tham ug, and
ungi were neglected. If this assumption is sufficiently correct %in the
end its validity can bs verified experimentally), then the rules for the
selection of coefficients examined in paragraph 2, subparagraph 2 may be
retained for Apl(Ps)=uiszist + wijbpsiPSJPs +.+45 and consequently it
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remains to determine the structure of

Ap (Pasr) wm ep, 30980 F BiaPoiten + 0 paPoiFf e

Ceefficients ¢y . have dimensionality snd physical sense of elastic
constants of th2 crystal and their aggregate is represented by a matrix
whose structure is dete mined by crystal symmetry in nonferroelectric
phase. The quantities hjx have the sense of piezoelectric constants, and
q; i, -~ the sense of coefficients of electrostriction. The aggregates of
these constants are also defined by the respective matrices |46, 477 for
a highly symmetrical phase.

We will examine expressions for Ap{P., ug) as applied te barium
titauate and Seignette's salt.

Barium Titanate

The matrix of elastic comnstants fer a cubic crystal O (m3m) has

-~

the following form 46}z

csy 5 ¢ U 0 O
s &y B0 O
g €13 Ty 1] 1] 0

€=l o 0 0 cy 0 o
C 3 8 A ¢ O
S T S R

Iu this phase the urystal has nc piezoe{fect and, consequently,
tii}vG.  The matrix of coefficients of electrostriction for crystals of
the class Oy is asnalagzus to &:

Jos 99 & v O
faz su e O 0 &
3 vy s Y & @
=l 9 0 © g € 0
g 2 Q2 0 g, O
\O 8 6 3 4 ;,,/

en for Ap{Ps, ug) will be written in the
5 . ndices i=}, 2, 3 are replaccd
» 3, &, S, é b}' XXy ¥¥y 22y YZ. X2, XY)=

and, congseqguentiy the z
foilowing menner (for graph
1

AplT. LS o AR AT) 0 (P, + Py = PE) 4 AP P P 4
; s py . h
+$=gi’3,?:,-r?;,?;,-;—l’3,l':,‘ A-'-j’-(P:t by P:g'nl‘;.::) + ?xfi":z(-"f, + Py
L - !
+ P WPl PLI 5 PLUPY, 4 PR 4 100,75, P, + Teniel, 3 al,, 4+ 80+

s

Lot R » P R,
e P T TeasRen U Syt d Fa By T U, + Bhyd +

Gt lpen P, + “a"jp:y + 8 P ., ff.’i, + 3,0+ Yogy (F0 + PL +
+ R (P2, F "3,)! + Cu (sngpupng R T RTLRE 31”"",?:‘-

(3.53)
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The gquantities Pgj and ug, are determined as a result of solving
a system of equations resulting from the equilibrium conditien of the

crystal: er_,
"y
", . (3.564)
o

23

wtions of these equations obtained for the first time forall ferro-
electric phases of BaTiO3 by Devonshire [3] are reduced tc the following
form:

1. Cubice phase
P”—P,'- Pu-o.
Yegs —8," -, -0.
Boag e Uyg, tme gy am§;

2. Tetragonal phase

L]
Pll“Ft"'o' P40+0.

- 21c1y— a1 (€31 + ¢19)
Yoo = Ten—en) (‘ul+ Zc::J (f:‘)" =¥ (Flig.

1101 — 1’ -
Sias = gy = T — 1 (en + 2c33) (Pas]y =¥ (PL);,

By mmUpyy oy, o 0

3. Orthorhombic phase
{3.55)
Poygmx 2,90, P.,O;

=111 — 3 (€13 = 2¢:4)
Fesr = Bory = Ten ~ exa) (en oF Zera) (ELhm,

—2{01¢15 — q12n1)
Moo = e = eaad (en + 2ag) PRl

L
Beay = Uypy w0l vy e e c—: (P

4, Rhombchedral phase

P‘.!-P,'!‘P""‘o,
— {gu —2¢.)

el e vl UL

Ve
By o™ Vg = Bygy = — "a: (Pl

It follows from (3.55) that temperature dependence of spontanseouvs
deformation or, as it is also called, :pontaneous electrostriction is de-
termined in the main by the behavior of sti (T). Theoratical relation-
ships P4;, (T) calculated in [3] for the phases 2, 3 and 4 and defining
ugyy (T) are shown in Figure 3.3.

It should be noted that spontaneous electrostriction "displaces™
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the character of transition in the direction of phase transitions of the
first kind. 1In particular, for perosskites {if transition of the second

kind cakes place) in tetragonal phase the expression (3.9a) is replaced
by [48, 49]:

e 0—10

Chly = ol (3.56)

2 2
q¢,,c,, + ¢ .Y + 2q5.¢c,, - 4q,.q .¢c
11("11 12 1211 11°12°11
where 9= - (qnce' + 2q,,9, )= - 37 >0
3 33 12731 (c11 ISACI + 2c12)
since volume electrostri-tion u + 2u___>0.
522 sXX

This inference is also confirmed by the increase of the jump of the
E thermal capacity Z&cp determined with the effect of spontaneous deforma-

tion of the crystal taken into accoun [49].

ot e

Seignette's Salt

»

T

For ferroelectric phase [rhombic symmetry D, (222)] we have the
following matrices defining the structure of Ap(P  ug).

|
W

Matrix of elastic constants:

‘M ey 3 0 0 O
= g € ¢ O 0 0
:-; Py €13 €3 g [} 4] 0
= \0 0 0 0 ¢ O
= 0 6 0 0 0 co

Matrix of piezoelectric constants:

0 0 0 B 0 ©
S-.(o 0 0 0 A&y 0\
0 0 0 0 O Ay

Tt il

Matrix of electrostsriction coefficiencs:

Wb iy

G 9 @ O 0 O

Mm 9 s 0 0 9

- P I ¢ © 0
= 0 0 © g4 O O
: 0 0 0 0 g5 O
0 0 0 0 0 e

= In view of the relativel, low symmetry of Seignette's salt the ex-
4 pression for Ap is considerably more complex than in the case of BaTiO3.

However, a number of simplifications are possible. Inasmuch as it is as-
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sumed that phase transition of the second kind takes place iun Seignette's
salt we may limit ourselves only to the terms Pg. And next, since a free
crystal is examined (external mechanical stresses and electr - field are

absent), we may limit ourselves to taking intc account oniy one’ component

Pgxs precisely the one which appears in a less symmetrical phase:

£

Ap(T, Pyuyp)we Apg(T) + 3P} + 5 Pl + ,», T {enulys + ensly, + cnvl,) +

1
+ f118aatiegy F 1381028300 F C0BaygPess + T ‘u“,,. +5 3 cgsbl.y -+ by +

4 Ry Pogiogs + 0:1P sB0as + 012P Es8ayy + 113P 3 0agy + 914P T 0p0e (3.57)

Furthec simolifications are possible if we limit curselves to the
examination cf the displacement deformation ug,y which has an anomalously
large magnitude
Bpyy e +3u Pz,) ]

™ w " (3.58)
My 1/ el BT )
e ~——%d—“~m-g o Tt |

The expression (3.58) considerably differs from a similar relation-
ship Yor BaTiO3 owing to the influence of linear ptezoeffeﬁt. We will

also note that the condition Pg,=0 is satisfied when 24 - z—— =0 and in
A

P.—-—

addition to this, Pgy becomes complex when

9 (hh?“ 'fu)’ ( ._J.)
[y

This cr. ces creates a formal possibilit¥ of explaining the existente of

a second Curie point owing to the influence of strong piezoeffect and elec-
trostriction.

2. Thermodynamic kucentials and
Elastic Electric Constants
in Ferrcelectrics

In the examination of the properties of a ferroelectric crystal,
in particular in the determination of behavior of such of its internal
parameters as P ; (T) and ugg (T), the differences between a thermodynamic
potential and free energy were not determined., These differences become
all the more important when describing the behavior of a crystal which is
under the effect of external forces and electric fielas. Thus, a question
arises concerning the selection of a thermodynamic function (i.e. a thermo-
dynani. potential in the broad sense of this word) for describing the proc-
esses taking place in a ferroelectrvic upon a change in temperatuxe and
during the action cf external electric and mechanical fields.

According to the definition (see, for example, [4, 71), free energy
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(it 15 alsc called Helmholtz free emevgy} is equal to

AmI TS, 13.59)

where U is the energy of the svstem. Passing on to differential relation-
ships we have
Cdmmdl — 1eS —Sdr,

47 o 188 — pdv (3.60)
(3.61)
and consequently
dh s —~SdT — pdo, (3.62)

i.e. the change in free encrgy is equal to work done on the system in the
case of a reversible isothermal process, or to the chunge in the amount of
heat with a constant volume. W¥hen other parameters lq and N; defining
the state of the system (for example, components of electric polarization
?; and external electric fields E;) are present, elementary work %‘\idhi

defining the corresponding change in the system’s energy must be added in
{3.60). Here A3dA; has the dimensionality of energy or, if & is re-
lated to a unit of volume ~-- the dimensionslity of energy density:

dAme =537 ~ pdo + T 2,41, (3.63)
L)

From this we have the following relationships:

(‘g%.a-‘“; (%g" S (% A i s (3.54)

(indices indicate which quantities are¢ ccnsidered constant in differentia-
tion).

If all A =0, then (3.64) is equilibrium condition of the system
with constant volume and temperarurea.

We will note that determination of the relationship P; (T) and £(T)
was based on thz condition (;;f =Ej.
i

1f independent variables in tha initial function are T and p, then
the thermodyramic function resulting in this case is called thermodynamic
gotential {in the narrow sense of this wordj}. It is also called froe
energy or Gibhs functien (for gas and liquids).

Connection batween é and A follows from the definition

Swall TS prom At pr. (3.63)
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The total differential of @ is equal to:

40 ne dA - 3 (pr) wn —~ SAT -+ vdp. (3.66)

Consecuently, the increment of @ is numerically equal to work
done by the system at s constant temperaturz, or to the change in the
amount of heat at a constant pressure.

If in addition to the variables 8§, T, p and v the state of the sys-
tem is also Gefined by a set of cther variables Ay and Ay, then inas-
much as the differential transformation of dA to dd does not affert the
variables A; and A

4% an 84 4 & (pr) mm —SET - 0d Add
+d(pr) + p+§ dl, (3.67)
and consequently
(3% Lk o8 s
\?'".')r.."“' (ar m.“"s'(dp)r.u'“" {3.68)

As long as a chauge in the volume (i.e. dimensions of the system)
and pressure plays mn role, the differences between & and A are un-
essential. Therefore, in setting up the equations defining the stacte of
a ferroelectric the question of precisely which thermodynamic function
is involved arose for the first time in taking spontaneocus deformation
in.o account. With the action of external forces it is necessary to
stcictly differentiate precisely which function is meant and, consequently,
pressure or volume should be considered constant in defining the equilib-
rium condition of the system.

Unlike a gas or liquid for which formulas (3.59)~{3.68) are vaiid,
a complex state Jf stress described by tensors of mechanical stresses &
and deformation ug appears in the crystal during the action of external
forces. Therefore, the quantity pv in the exprassion for § must be

substituted by a sum of the type Edkuk {work donz during the defoma-
k

tion of the crystal). Differential relationships must be changed in ac-
cordance with this, i.e.

0}(r| P{- 0.)-0—5?-25,9,, (3;69)

20 —SdT — P uydey + 3 EdP,. (3.70)

The function defined by formulas (3.69) and (3.70) is called elas-
tic thermodynamic potentiai or elastic Gibbs function (for crystals).

Upon passing to the new variables Uk, T and Pj, free energy is
expressed as
Ap(T, Pyl —TS, (3.71)

dA,——-Sl?-i-E“a“rf'EE:‘Pl- (3.72)
T 3 (3,7
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We find the following important rzlevionships Srom {5 72 u=4 “3,72):

(5] s (25 s 0.7
(%‘;,—:—).“us,. ((::.)r. i (3.74)

4, r 30N
“f"('f).q (71’7)1. @ \W)f- [

(3.75)

If it is assumed that coanection between G’k and ug is linear, i.e.

= Xsk“;, then we have the followiag for &P:
e

i 3.76
9,47, Py, "5)-0-r8—722’:l°1°t: ( )
& s

2%
polarization {induction).

where S£L= is matrix of moduli of elasticity at a constant

in a similar manner a group of teims represented by the sum

322 c:’.uku‘ can be singled out in the expression Ap. 1In this

smnk v
I (_i"’i'..
&2 ™ \gupdet /2, ¢ (3.77}

are components of the matrix of e‘astic ca?stan ts of the crvstal, measured
at constant polarizaziom and with cls(sF)

Forming second derivatives of chermedynamic functions with respect
to poiarization we will find:

( %Ay { d1bg )

—F N Plalhed 5N >
gP‘op,)z, o™ \SFahr. o =T (2.78)

where '“-?,k and n‘;k are tensors of iaverse dielactric susceptibility,

detzrmined respectively with a constant deformation or a constant mechan-
ical stress. We will note that dielectrxic-susceptibility tensor is egual

1o x(z(q‘)-l and, consequently, components of dielectriz-susceptibility
tencor, determined from (3.78} will be written as

L A L Y AP Y 150 (3.79)

If T, # and E are selected as independent variables, then we will obtain

a function which is called thermodynanic potential or Gibbs function (for
crystals):

(T, & 0,)—',--?8-0—?5—?::.',—?8. H (3.80)

40, 0y —d (PE) o g wrdey — SIT — F PUE,.

¢ (3.81;
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if independent variables are T, E and up, then we have electric
thermodynanic potential (electric Gibbs function):

O (T By Ay~ P Ema U — 78— ¥ P.E,, (3.82)
4

40 mdiy— 3 (PE) _'-sar - z PAE -+ I edn;, (3.83)
4 *

After differentiating @13 and §2F, with respect to ‘k and
ug ve wili finds :

#9,4 0
agc —(73;7;'7}!.? x ‘5‘“(0“:“1 )'-" (3. 84)

To obtain fundamental equations describing the stare or a piezo-
electric crystal, use should be made of the fact that expressions for
cotal differentials of the respective thermodynamic potentials are given
in (3072)’ (3081 and (3083)0

Making use of thermodynamic potentials Ap, Q‘p, @15 and §>28

represented in the form of polynomials with addends of the order of PiP;;
EjEjs 61605 UyUpas F PPy ucE{Ey, etc. we will obtain canonical equa=

ticns (written in matrix form) defining elastic elentric effects in a
crystal:

» {e,-—e’u-&-ﬁﬂ [ Y FRTY S

B wa K8 4.9 B g
+4 @4 (3.85)

8 Joam—trpth [Om—t"r438
| Emprraep Pem—dt 1308

Equations (3.85) define physical sense of riezoele~trie constants
hiks 8iks ¢+ and dj (the constants djk are usvaily called piezomodulij.
The following relationships exist between these constants:

Boom g% me 207; o §% o iied;
TR Y O3 T N Sy

Making use of these relationships and the equations (3.85) it is
possible co find connection between elastic congtarnts determined Sor a crya-
tal with short-circuited and open electrodes (sl-'l:k., CER and ) cik)’ for
example:

‘6’:”’ft+2f:(dd-

For component: o° the tensor of inverse dielectric susceptibility
of a "'clamped” ‘ik) and "free" ( ;) crystal we have:

=T g*c-l-r

A special characteristic of a ferroelectric is that the free energy
Ap, which is z component of thermodynamic potentials $p, P,y and
2p represent: an expansion containing terms of a higher order than PyPy;
E{Ey; 61 6'y; U PiP;, etc. with some of the coefficients of the expan-
sion being highly dedendent on temparature. Theretore, some of the elastic
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aad elastic-electric constaate must undergo appreciable temperature anom-
alies 'n the phase transition rsgion.

Relationships being sought may be found on the basis of Ehrenfest
equationy connecting the discontinuitias of various physical quantities
in a phase transition (see [4]). However, Ehrenfest equations are lnap-
plicatle in the case of phase transitions ~pproaching critical point when
thie quantities mentioned tend to infinit:.

To establish connection between these quantities for ferroelectric
transitions, Janovec [50] recentiy made use of Pippard's [31] and Gzr-
land's [52] genecralized equations and procedure used for a thermadynamic
descrintion of transition in liquid helium by Buckingham and Fairbank
[53]. We will cite the basic results obtained in the work [50]:

I AN 3

I4

o o

T -‘h,r,.---‘- e, l
x} 3 o

AL SR 11N

(3.86)
S At 3 W

|
. ‘1.3 A ]
':;l_.‘:’z‘._f_ 43 4.

§, E

Here ¢ is gpecific heat, Nk" E are the coefficients of

s
thermal expansion, s;{“; E are moduli of elasticity, (pile= g—;)é ale pyro-

5 electric cosfficients, and djj are piezoelectric moduli.

IR

Quantities with tha index "0'" have a 'mormal", i.n. weak tempera-

2]
ture dependence; the quantity YE= - [5—-) . is weakly dependaznt on tem-
k)R

iR

perature according to the definitien. As #n example, the relationshins
(3.86) were used to describe a ferroelectric tranmsition in triglycine
sulfate [50]. 1Ia doing so, it was found that experimental data for TGS
agree wel: with the equalizies (3.86). Thus, these relationships repre-
sent a convernient method of checking the consisteucy of experimental data
describing a ferroelectric transition >f A-type,

(i

Sl

WA

v

Coming back to the question of selection of this or other thermo-
dyramic potential when describing the properties of a ferroelectric, we
will note the following. 1In the abseace of electric field {E;=0), we have:

gy Joitd

Ape=Dpom &g PE e byp 4 PE.

T

T A D o i

for a free crystal (O'k=0) if gspontanecus deformations (ugk=0) Ap= @p=

= =é are neglected, and for a free crystal located in an external
}E 2E S : t nee
field when electrostriction and piezoeffect arr neglected.

£ The variables T, ug and P were made use of in paragraph 3, sub-
L paragraph 3 in the examination of spzcial features appearing when taking
L2 account of spontaneocus deformations in a free ferroelectric and, conse-
quently, the expression (3.52) is free enargy Ay (T, Pj, ng)s The
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d same results could have been obtained by using elastic Gibbs function
E @p (T, Py, dk) if a representation fcv spontaneous mechanical stresses

leading to the formation of :pontarzous deformations, i.e. u5k=v.°.£"e’sb
were introduced. “i‘

in describing the properties of a fixed ferroelectric it is pref-
erable to "work" with the variatles Pg, ug, i.e. to make use of the free
energy Ap (T, Py, uk). Conversely, in the examinacion of behavior of a
free crystal and of a crystal to which <ternal forces are applied it :is
more convenient to use elastic thermodyuamic poteniial Qp (P, &) since
the equet uns resulting with its differentiation are simpler and accom-
plish tle aim faster~. It should be noted that both approaches have been
used svfficiently often in the studies of ferrcelectrics. For example,
elasti: thermodynamic potential @ (T, Pi» &)) was used in the works
[z, 38, 39] in the detemmi,ation of effect of mechanical stresses on the
properties, and free energy Ap (T, Pj, uy) was used in {3.4%) with the
results of these studies agreeing with each other.

3. Ferroelectrics in the Case of Wzak
External Influences

According to Curie principle, during tne action of external fcrces
crystal symnecvy contains only elements common with the symmetry group of
the external influenca. Therefore, in satisfying the equilibrium condi-
tion the exprescion for thermodynamic potential of the crysta’ (most oftep
Ap (T, uky Pj) or @g (T, &, P;)) must coutzin only the invaviants de-
cermined by this symmetry. Finding of the values of variables with which
eqilitrivm is provided is reduced co finding the minimum of > with the
spenified external forces, i.e. to the solution of a set of equa.ions of
the following type 1 a0y

-d—P-‘--nE‘ I=d, 2, 3; ’

g I

I "
R LR

iy

Tl
el el

o

P LAl (3:87)

_d-t_:--‘_u. ku!. .« aay 6. ’

. ’
el G

f

In orde:s that the solutiors of (3.87) indeed correspond to the min-
imum of @P in accordance with the rules for finding the minimum of 3 func-
tion of many vrriables, it is nccessary to rcguire the satisfaction cf
stability conditions, i.e. of a series of inequalities for determinants
made up of the second devivatives of QP with respect to independent
variables [see, for example, (3.50)].

i
¥

o

-

L

' In .hose cases vhen a phase transitiocn of the first kind tu'es
- place and two different phases coexist at a specified temperature and
stresses, che absclure values of QP of each phzse are compared and
- ir this maarer it is determined whicn one of thew is metastable.

When solving the equations (3.87) simulcaneously with stability
conditions (3.32) Curie principle is satisfied automatically and, conse-

1) For the other th-rmodyn:~’:> ,>terc’als Ap, él? and
;- equilibrium conditions are written in a simiiar wanner; physica
e of independent variahles changes.

2
s

o

nse
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quently, when constructing the function ép there i§ no need to be con-
cerned with its resultant symretry. 1In other words, the expression for

p may contain all invariants of the highly symmetrical phase similarly
to the way t.ois was done in the determination of the components Pg; and
ugk (3.53), (3.57). Anothe- approach is permit:ed, which in a number of
cases substantially simplifies the investigations, when terms the exis.ence
of which in a set o final solutions clearly contradicts the oroperties of
symm:try of the external f- ‘ces are excluded from 4>P in advance (for
example, in the %PP of . cubic crystal there is no need to take into
account the displacencnt components during the action of mechanical forces
and fields along the major symmetry axes).

we will note tvhat ecuzations for piezoeffec: (3.85), whill are aoth-
ing else but a generalized mot:ix form of vriting the solution of linear-
ized equations £2.87); also sa<isfy the requirements of Curie orinciple
if matrices whose structures sa(isfy the requiremeuts cf symmetry of the
phase with which we are concermea in a ferroelectric appear in them. How-
ever, th2 equations 3,84} do not contain by themselves the information
on temperature d2pendences of parameters of a ferroelectric and on stability
of its phases under different conditions inasmuch as they kave nc specific
fectures characterizing the crystal near a pnase tracsition,

In the case of weak external influences when the effects brought
about by them are sufficiently small in comparison with some of the para-
meters characteristic of a sysiem (for example, when polurization P,; and
deformatiou uyk inducec by ~he field and mechanical stresses are small in
comparison with Pgy and ugy,) the systen (3.87) may be reduced to c-uations
linear with respect to Pyj and uyk. Of course, in direct proximity to the
transition point the assumption concerning the relative smalli=ss of Pyj
and uyj is condirisonal.

We will examine solution of the equations (3.87) as applied to
ferroelectrics having symmetry Of above Cur’ point and to ferroelectrics

which exhibit piezoelectric properties in tne “tighly symmetrical phase.

Barium Titanate Group

Thermodynamic theory of electromechanical properties of barium
titanate was de,elop:d in the works of V. L. Ginzlurg {1, 2], Devonshire
[3], L. P. Kholode ko [38, 39, 54, 55] and other authors [48, 49]. 1In
the works [1, 2, 38, 3?3 the authors examine conditions for the minimum
of elastic thermodynamic po-ential ébp (T, Pj, %), and the miuimum of
free energy Ap (T, Pi, uy) is determined in [3, &8, 49I. As already
pointed out, this difference does ne '~ad ro contradictions, However,
in the detenmination ¢f electrostri--.n corrections to the coefficients
of the expansion it is preferable to use tbe s2cond method. This was
done in subparagraph 1 of this paragraph. When mechanical stresces
brought about by external forces are present in “he crystal the first
method proves to be more effesctive.
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The expression for ép(‘r, Pys ‘P) will now be writtem in the
following form: ’

(T, Py, '33-09(7)4"(?}4‘?;-&-1’})-}-%‘(P}-}-P}.}-?}) +

R t
+H(PIP)+ PIPIH PPL + 30 (P Py 1 1) £ 1,100 (P2 4 Py 4

F PP+ PO + PLPL 4 PY 4 13 (PIPIPY ~ 5y o, PY + YyPy t+0,,P)) —
=30~ 1%0 (85 + Pl) ot 0y (P4 P3) 41, (PL 4 PU =20y (05 P Py +

i
+ 0,,?,?, +05,P,P,) — 7 cl’l‘.(‘za + ‘:g +25,)—ay (Oastyy + %29, + oy}~

1 1,88
—F e Gy + e, 4 a) ( )

" rmparing this expression with formula (3.53) we s5ee that their
structure ccmpletely coincides [if, of course, in (3.53) P5i is substi-
tuted by P;j and ugy by “k]' The difference in signs before the mechanical
and mixed terms is e:plained by that a system o signs different from [3,
48, 49] is used in (38, 39)] and, consequertly, in (3.88). Namely, it is
assumed 1n [38, 39] that elongation deformations andstresses are positive
whereas in the works [2, 48, 49] and other works elongation deformarions
and compression stress are positive. In the cxaminatica &f spontaneous
deformation this was of no significance. However, hencaforth, when com-
paring the results we will use the more natural system of signs used in

the works [38, 391, i.e. “elong>o’ ‘elong>o’

In additim. t5 this, in Ap (T, P, u) the coefficients d, f 4 R
pZ’ etc, should Le provided with the symbol ™u" in conformity with the
fact that vhey are taken with a constant deformation whereas in p (T,
Pi, Gk) these coefficients are taken with a cunstant mechanical stress
in the crystal.

£
It can be shown that, for example, P;= Ay - 9 It is also
obvicus that elastic constants ct, enter (3.53). The matrix of electro-
striction constants ojx has the same torm as qjk in (3.53)

1) Notation of , (T;, P; &, ) from {38, 39} differs from (3.86)

in that terms of the form Png and ’x’le instead of P: (sz +

+ P:y + P:z) and ¥, (ng + ng + I‘gz) appear in [38, 39]. Both nota-

tions and all results are identical if coefficients of the expansion Pz,

¥, and Y3 are sutstituted respectively by fp - £, ¥, - ¥, and

"3 -2y, from (3.88). The advantages of formula {3.88) consist zn that
. . . N ! 2p2 2

is does not contain superfluous invariants of the type Pjpi and PjPi. In

addition to this, comparison with the results of the cther works, fgr

example [3, %o, 491, and of the preceding sections of this chapter [com-

pare with formulas (3.46, (3.48), (3.49), {3.52, (3.53) is made easier.
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The main results of solution of the set of cquations (3.87) accord-
ing to [38] and [39] are given below.

1) Spontancous Polarization. Solutions of the equations aP') _{)=0
with the additiovnal conditions (3.50) are sought. ij6=

Soluticns have the following form (see also 3.49).

1. Cubic phase

T

2. Tetragonal phase
1
Py g (b — VT,
Punp"-sﬂ;

3. Ortnorhombic phase (3.89)

1
=Py =Ty R R+ YE TR -G+ 90)

Pyl
4, Rhombohedral phase

4
Plam Py me Py e it g B ) +

+ VB Bt — 8 (1, + 613 F T9))-

Stability conditions (3.50} give the following inequalities for all
of the four phases: !

1¢>0; ]
RE) +2mPL>0 2) fi—R o 2{L—-1)PLD0;

12) h—B— (h— =1 PL G 2) h—Br+2(n—1) PL<O; (3.90)
3) ht B —2{n 450 PLDO;

IVl +n422L>0 2 h—bh +(n—2n) PLSO;
I =R+ 2+ O+ PLS

A very interesting cu.clusion follows from (3.90): whken ¥;=7¥,=
=7Y,=0, phase 3 is unstable since the first two -onditions in (3.60) for 3

. 6 .
are incousistent, In othar words, the terms NPsi have to be taken into
account to explain the low-temperature transions.

2. Spontanecus Deformation. Components of spentaneous-deformation

tenscr were defined in subparagraph 1, paragraph 3 (see (3.55) on the basis
of conditions of minimum for the free energy Ap {T, Piss ug).

For éép ‘T Piy dk), expressions for ug will be found from the
sep

i —— P Ittt i 1 i {1. -
equat <ms(a,.k o " Usk upon substituting in them the soluiions (3.89). For

1) The relationskip Psz.i (T) calculated by Devonskire [37 is shown
in Figute 3.3.
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example, for phase 2 we have!

B =3Pl Uy, Uypy w2y Pl }
Upgy omUygy oo iy, w0,

(3.91)

Comparing these equalities with the formulas from {3.55), the elec-
trostrictive consctant. X¥j may be expres.ed in terms of coefficients of
= 2;2C5t!'53m°n qik and elastic coustants c{k (133= 49'33, Z3l= 931 from

N R

3) Dielect -ic-Coustant Tensor. To find the component zlk of the

dielectric-constant tensor in the abscnce of mechanical stresses the follow-
ing set of equations is solved
”,
( (14 & )'.-00- E"
The condition of smaliness of the quantity E makes it possible to
linearize these equations. For this purpose, polarizatio' is represented

in the fellowing form:

Epﬂ)'.:Pii} P‘-P:;-Q-P.‘(E), (3.92)

T
LRTIA

where P;; is a small quantity, Making use of (3.92) and neglecting terms
containing the quantities ~P, and higher, we will obtain a set of equations
linear with respect to P{.. Next, making use of the defirition of

fitnhu e K

ii )
4 P;.= fie ~ E
- 1T 7 4 K
3 we will obtain the following:
E Phase 1.
5, 0 0 \
*eel 0 .:' 0 i a,,,-l"—c”—_-‘.’;"‘_.
E 0 0 ';sll
e Phase 2. G, 0 Gy
=3 Fefo s 0 )
3 4] [+ B ]

.' L --‘
00 ™% =y 7:.

¢ -
o B ~n T - PP

Phase 3. Expressicns for £;, are very cumbersome and ave transverse
components of the type £,,. However, after reduction to the major sym=
metry axes they acquire a suffric tly compact form:
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(C:. - 2= :
th—F1+ (s — 1 =13 PLI P,

(8 ) e % 7 () =
L4 l -Pl'i"‘"l—‘dpu P“ bt W.

Phase 4. After reduc-ior to the major axes:
£ 4 L4 x 3
("‘y-(‘”y.,"ﬁ-'ﬂ"'“!"hslu”u' (3.93)
W =—mrgrE
e

In Figure 3.4 are shown temperature dependences of the values of £
calculated for BaTiO3 in [3] and reduced to major axes.

Temperature depenc .nces of dielectric constants of a '"clamped' crys-
tal are considerably less marked [3, 37, 42].

\‘ 16000
[
w ‘\ 1
4
2000
?ﬂ - 199 1,°C

Figure 3.4. Temperature dependence of
components of dielectric-constant tensor
for BaTicy [3].

1 -- cubic phase; II -- tetragonal phase;
II1 -- orthogonal phase; IV -~ rhombchedral
phase.

4) Piezomoduli Tensor. To determine piezoelectric properties it is neces-
sary to solve simultaneously the following set of equations:

o 2 (3.94)

(direct piezoelectric effect Ej=0; #+0) or

;.P—_=E‘; ._-;;--0 (3.95)
(E;#0; ‘k=0; inverse piezoelectric effect). When using formulas (3.95}
for region I1 the inverse piezoelectric effect is expressed as:

- N
Byl (P 20, Py ) = v, 5 :‘.—2'.’—"'5,. (3-96)
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In other words, inverse piezoelectric effect in BaTiD3 and in ferro-
electrics isophormous tc it is in essence linesrized electrostriction. It
is obvious that the results of both methods of determining the djix must
coincide.

Calculated components of piezomoduli ars given below (for phases 3
and 4 the values of dik are reduced to major axes).

U6 w0 dy 0
dm{ 0 0 0 43 0 0};
dy dy dy O G O

d ‘-up,. S"l:,P-' .
e T 7 e BT S

Phase 2.

— 52l — By
2i 4 3-PL) ix *

d3y == dyy oo

- *u - 2t5e Py,
e —=21) + G2 =1 PLIP, =

dyw=dy;

Phasza 3.

{333 4+ 342 2y ) P, . d: _ *,4Py, —
T A e B e PRI T T VI e+ ik B P
e Ay =200 Py, & 23— 3 .
20 e g BB P N T 2V |l B+ 2 (=) A,
& . 21,
W =Rt (h~T— 1) Pa

F o

gy —

Phase 4.

_ (34 24+ 224 P, |
V3 (28 + (g + 2o P11
{353 4 S5y3—34) P,

2V3120 + Gy + 23,) PL)

dyyvm

dyy medggm —

Ty — 3y Ty .
- el P *
2% B — Bk (=21 PLI
2y — 22y, -1y

- 293 fiy — By 4 (13 —2n) P} P(’.

! ..
3n!=:—d;’=-— 7‘!!"

dig=dy =

Relationships of piezomoduli to T (not in the major axes) calcu-
lated in [3] are shown in Figure 3.5.

It can be shown [3(] that conponents of piezomoduli and dielectric
constant are connected by the general relationships:

5;;'7“ “‘1(%).' @57 (3.97)

where all quantities are taken relative to the major axes. The relaticn-
ship (3.97) follows from tae obvious fact that upon the application .f the
fiela both P and u, are brought about by the displaczement of tae
ckarge.
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Figure }.5. Temperature dependence of
the components of piezomoduli for BaTiO3

[3].

II -- tetragonal! phase; I1II ~- orthorhombic
phase; IV -- rhombohedral phase. 1 -~ d15=

=d163 2 -- d15=d24; 3 -- d11%12=d33; 4 -~
d22=d333 5 -~ d33; 6 -- di5 =dye=dy4=dye=
=d34=d35; 7 ~- d24=d34; 8 -- dj4=dy5=d36;
9 - doj=d3p; 10 == d3p=dyp; 11 == &5-=
-41342142 =d32; 12 -- dp3=daa.
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5) Moduli of Elasticity Si and ik, Analysis cof the equations
(3.85) simultaneously with (3.86) shows thatr behavior of the constants

ik and sl:x and of the constants c(E) and sgf) which appear in thermody-

namic potentials é and @2, ie very dissimilar,

R AP et

il

Whereas the former are continuous and relatively weak temperature

. - E . .
functions, the latter, i.e. the quantities cgk) ard Q(E}, either undergo

. 1 e
a discontinuity or experience a sharp change in the phase transition re-
gion (Figure 3.6).

-
gy

Y

6) Displacument of Cur . Point., 1I-. tellosws from {3.83) that in
the presence of mechanical stresses the rezm ~ap? may be combined with
invariants of the type xinpg‘k and, consequently, ai=d— j‘ik‘x' The

I DR

e Py

condicion for phase transition changes in accordance with this. For

example, in the region of tetragonal symmetry the conditien d =0 leads
to the following formulas [39]:

11 ~5
3""1.—' - = ., ‘".lmi-&- ' e

i e R
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Figure 3.6. Moduli of eiasticity with a
perunanent field for BaTiO3 in relation to
temperature | .

I -- cubic phase; II -- tetragonal phase;
II1 -- crthorhombic phase; IV -- rhombo-
bedral phase.

On the basis of these relationships the appearance of additional
polarization may be represented as a change in spontaneous polarization
Psys brought about by a "displacement' of the entire curve Pgz (T) to the
right or to the left of some point T. From this, a conclusion may be drawn
that «ppearance of piezopolarizatioun and displacement of the transition
point @ are essentially equivaient effects brought about by a change {49]
of the state of the ferroelectric as a result of z2pplication of external
forces.

Scignette's Sale

Elastic tharmnuvnamic potent:al for Seignette’s salt may be easily
obtained from {3.57) after appropri;te substitution of variables and coef-
ficients of 2upansion, i.e. cik—’sik’ "skqgsk; qik’*xik; hik"’gik;

Ot-ouf; p —-»pd. Owing to the presence of a linear piezoelectric tem

in é_. solutions of the equations (3.87) are expressed by very cumbersome
formulay that lend themselves with difficult to analysis. 1If we limit
ourselves to a unidimensional approximation [1, 2], i.e. if @P is rep-
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resented in the following form

: 1 i -
OplT. Prv o)W (T) § ePY 45 P T sl = Ryl == 1y P (5.98)

then a connection may be established between certain parameters in (3.98)
and {3.57), in particular

Zus . Zu
STt T
2
3 3 4 ‘N hl.l‘
Abnve Curie point, whan the terms Px’ A ~d . —— and con-
sequently, €44
ix 1 {
C:.-l+ rouk ‘“u 7 . g"._-g T
A B, p_ ki
ele Ay " R

T
whis T

4, Soms Comments on Thermodynamic Descrip-

tion of Nonlinear Properties in Ferrc-
electrics

M EHARY

bl R

At the first glance the attempt at a theoretical description of non-
linear effects on the basis of themmodynamic theory of phase trznsitions
appears very natural and substantiated by its extrapolation. It may be
assumed that the problem is reduced merely to the calculation of high pou:-
ers ¢ the ficl. and mechanical stresses in the equations of stace

a¥p e

55 =Ei; 3 ke
dr; T %

i
A Ay St

It would seem that solution of these equations in the foilowing form
Pi (T) Ei) \,’lk) and uk(T, E, ‘k)

would make it possible to calculate the relaticnships of dielectric and
piezcelectric constants to tne field and mectvanical stresses. Actually,
physicai statement ¢f the problem must be cousiderably more complex.

= The fact is that .n the case of intr~nse external influences non-
E linear change in polarization (the main physical substance of nonlinear
effects in ferroelectrics amounts precisely to this change) is sccompanied
by an extensive tronsformation of mechanical and electric energy into heat.
Ir other words, the process becomes irreversible and must be examined
using the methods of irreversible themmodynamics. There is no doubt that
energy dissipation takes place in yhe case of weak excitations also, i.e.
in *he region of iinear dependence F (T, Eji» dk). However, here, owing
vreciseiy to nonlinearity the reversible and irreversibie components of
the process can be separated and examined. For exampie, the relationship
£{T) can be examined within the framework of reversible themmodynamics,

R

ul

T

- 86 -

PRI of 4

T R

i X
it
L

lh,




e " G
R S P i B

Al

and tg‘S(T) -~ by means of solving differential equations describing the
stabilization of the procers in time. In rke case of lc-ge exciting fields.
such a separation proves to b. "“rzssible owing to nonlinearities -- hys-
teeesys loop is brought about both by the reversible change in olariza-
tion during the cyzle ot the change in the field and by 1irreversivie
transformation of electric energy into heat.

A rigorcus application of irreversible thermodynamics for descrit-
ing these processes encounters great difficulties inasmuch as irreversibla
rkermodynamics of elactromagnetic process is applicable only to linear
systews [ 56, 57). Some of the basic theorems underlying irreversible
thermodynamics, the so-calied Onsager reciprocity relationships which
astablish the connection between thermodynamic forces and flows in cross
events, are valid only in the case when these flows (for example, currents
and deformations) are linear functions of thermodynamic forces (the field,
mechanical stresses, etc.). However, precisely these conmnections, both the
direct and cross connections, are assumed to de nonlinear. Thus, in the
attempt to create 2 rigorous thermodynamic theory of hysteresis loop with
energy dissipation taken into account, we encounter a series of basic dif-
ficulties which increase still more for polydomain structures inasmuch as
a sufficiently correct theory, even within the framework of reversible
thermodynamics, has not been created for their description. It should
also be noted that according to experimental observarion of behavior of
a single-domain crystal in a strong field, repolarization always occurs
by mears of appearance and growth of the nuclei of polarization -P, inm
verse in ralation to Pg, and not 2< a result of a simultaneous vepolariza-
tion of the entire crystal. The growth of these nuclei is a complex stati~
stical process in which, in addition, the effect of their interactiom also
plays a role (see chapter 7).

In considering all of the foregoing, nc surprise should be caused
by the fact that coercive field calculated on the basis of representations
concerning raversible thermodynamic process in single-domain ferroelectrics
exceeds approximately by 20 times the vilue of Ey observed experimentally.

At the same time, the application of 'conventionai- thermodynamic
representations by no means proves to be in vain if attention is focused
on the explanation of qualitative characteristics of ferroelectrics.

For a number of casec this approximation amouats to the following:
a comparison is made of the theoretical (obtained using the methods of re-
versible thermodynamics) and experimental cyclic relationskips Py (Es, 6&, T),
i.e. hysteresis loops, plocted in a quasi-static state. Next, theoretical
loop is recorded in dimensionless coordinates and identitied with the exper-
imental loop. After this, all relationships of the parameters can be de-
termined on the basis of reversible theory in terms of the parameters of
the theoretical loop recorded in the scale of experimental hysteresis loop.
This method used in [9, 53-601 cannot be used for a quantitative descrip-
tion of parameters which nharacte -ize energy dissipation, Effects observed
in "aging the test samples in a s rong field" and the so-called aging ef=-
fect also drop out from the corszideratisn. However, this method gives
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quite satisfactury results in the explanation and ewven quantitative eval-
uatior of nonlinear dependences of dielectric and piezocelectric constants
deternined after the completion of these transient processes.

We will illustrate the foregoing by examining the behavior of di-

elzectric constant & and piezomoduli d33 and d3; for terragonal phase
of BaT;j03. We have:

On (T, Pr. o) Oy (F) + €P] + T RS 1PY~ (b + Drg) P -
4
-7 ‘rl (°J’l + 2”;:)— '5: (’:. + 21,‘0").
r . =8 = 22,7 ¢ -12 '1‘ =
Here éxx Soyt '/11 19:33 2.7 * 10 bar ; 112
bar-l., The cir_umstance that in the expression for 4> we limited our-

selves only to the terms Awd& is connected with the fact that according
to measurements moduli of elasticity are practically constant in 3 wide

-i2
&= -1.2 - 10

range of values of 6k' As regards electromechanical "cross" terms of
the type 3kP§ and dEPZ, neglecting of higher powers when excitations

are sufficiently intense indeed does not always prove to be correct.

Next, as usually, we urite the equations of state (6k=0) with an

additional condition -—-,;)0, i.e.
3
z
2P, (e 4 3P+ AP} = E,, (3.99a)
5.tl”?“"n- o 4b
3y Py e vy, (3 Q )
« 4 35P1+ 51P4 > 0. (3.99c)

(3.100)

Inasmuch as the r~~ion of tetragonal symmetry is being examined,
the subscript 2z will henceforth be omitted for the sake of brevity.

The equation {3.99a) and inequality (3.100) were investigated by
L. P, Kholodenko [58, 60] who found the relationship P(E) and the mag-
nitude of coercive force Er, i.e. those values of the field for which
(35.993) and (3.100) are incompatible and the system is unstable. The
expressions (3.99a) and (3.100) prove to be cempatible upon changing the
sign in front of P to the opposite sign, i.e. upon turning the polariza-
tion vector by 18C". The relationship P{E) obtained in this manner proves
to be ambiguous and has a characteristic shape of a hysteresis loop
(Figure 3.7). However, the valua of Ec found from (3.99a) and (3.100)
proves to be considerably higher than the measured values. As already
mentiored above, it is possible to surmount this difficulty to a rertain
extent since the celatiouships &€(E) and dji (E) with which we are con-

P, (E)

cerned are determined in the final analysis by tle relaticnship

where Py is induced polarization. Consequently, if E ‘s measured in
the values of Ec, and P -- in the values of Pg, then the shape of the
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Figure 3.7. Theoretical [60] and experi-
mental {6.] hysteresis loops for BaTiOj3
(in relative units).

1 -- theoretical curve for T-80°C; 2 --
thaoretical curve for T=20°C; 3 -~ exper-
imental curve for T=20°C.

loop, and not the absolute valve, becomes the determinant as a result of

such an identification of the scale. If in doing so, a satisfactory co-

incidence of the shapes of the experimental and theorestical hysteresis

loop takes plac~, then an agreement between the calcuiated and measured

relationships aléi) and dik(éi) may be expected. With this aim, the fol-
c c

lowing dimensionless quantitiec are introduced into (3.99) and (2.100):

Py 5 P
=p, b, =, .
PEpe by 5 (3.101,

1

E . a3

&= — _E!‘-"

(2.102)

After this, (3.99) and (3.130) are solved graphically in these relative
units (Figure (3.7),

We will now investigate P (e) in rhe range of values {e| 0.5,
i.e, with fields whose amplitudes do not exceed the magnitiude of coercive
field. P"(e) is soughtin the form of an expansion with respect to the
powers of e up to the terms ed:

P o=

"‘/ -

e, (T)e".

#

{3.103)

After the substitution of (2.103) inte (3.99) and equating the coef-
ficients plsced at the same powers of e on the right and or the lett, we
obtain a set of equations by soclving which we define ap as a functiom of
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pg and §, i.e, in the final analysis, as ¢ function of temperature.

a - 1 .
Suppose e=ey sinat ", Then, after a series of transformations

[9} we will obtain Pyule) in the form of an expansion with respect to
harmonics:

3
P. (e, T)sm 2 P:l) (a,, &) sin (net -l (3 10(‘>
a0 .

where the ampliti.des of PM are tke known field-amplitude functions eg
and a,(T).
The exprezsion (3.104) 1akes it possible to calculate both the total
))
dielectric coustant and that portion of it E‘n’ which is determined as a3

)
n
result of weasuring a certain harmonic of the displacement current P( ‘

M
flowing through a nonlinear capacitor:
UL N
) gy ¢ {») 3.105
.(01“41%15)-_‘,('.!&"—“&,-. ( )
A=
!h}
17} i
g “en,
1JL-
10 Te20°C ;
1
o4 :
.0) i
7 1
@)
02 2 im X
1)
[ 7 s e \ //j
. 14
0 0.9 0.8 £,k b
{
Figure 3.8. Relationship of g‘n) . «re 3.9. For the explanation of
to field amplitude. (1) ‘Sl)
the relationship g' '= & (e).
{(n), .
Next we will introduce the quantity g(n)(e0)= !L_E;fl vwhere
0

TSIy
Sy 2 e i__l'n_-_]ﬁ -0.
(n) Thus, 3(n)(eo) defines the weight of the respective "harmonic"
e , t.e. its value in relation 1o the normal value of £g measured
in small fields in the case of which nonlinear effacts may be neglacted.
The amplitudes of g(“) (eC) calcuiated for T+20°C are shown ig Figure 3.8
L.

the X-axis of which P=s 2 second scale expressed in units of 2 + This
makes it possible tc¢ . .nnect g(“’ with the concrete values of°the fields

1) Of course, the question concerns very low frequencies, i.e. Y 4
R @“’0 where &g 1s resonance frequency of the crystal sample.

L

5
ik
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and apply the curves shown in Figure 3.8 to ferroelectrics having differ-
ent E.. As may be seen from Figure 3.8, the ampli:udes cf all harmonics
gYo#, with the rate of their growth appreciably increasing as the field
amplitude spproaches E..

Nonlinear growth of the first hanmonic which is of the greatest in-
terest inaswuuch as this is the hammonic that is usually determined in meas-
uranent.s, and the growth of high harmonics and dircct cemponent of the cur-
rent wuy be e:xplained physically on the basis of the fellowing (Figure 3.9).
During the sction of s variable field E«{E;. on a ferroelectric the induced
polarization P, {and, ccasequently, the current alsc) will vary as showm in
Figure 3.9, t.e., it will be assuming values defined by the upper branch of
vhe loop (the scntion b of the lsop), with a positive half-wave of the
field P increasing gvsdually and with a negative half-wave -- more 1harply.
1t 13 easy o see that such 2 relationship of K, (t) leads to a nonlinear
growih of the firat harmonic and to the appearance of higher harmonics and
a negative (in relation to ¥g) direct component of thke current., This di-
rect cowponent or Lhe Current is cjuivalent tn a certain negative incre-
ment AP of residuai polarizatica:

.\I’,n}’:‘,u -—:%%‘"" (t‘). (3- 106)
. .

(0)

Actually Py,~° does not change the relationships ¢£(E). However, as we
shall see, it appreciably affects the shape of the curve dji (E). With
the fields EQ)EC (eO)O'S), expressions for g(—“ become invalid in view

of incompatibility of (3.99a) and {3.100).

Thus, we have arrived at a cathar obvious conclusion which apparencly
may be taken ints account in explaining a considerable portion ¢f nonlinear
effects observed in ferroelectrics,

The relationship £(E), i.e. in the final analysis P“(E), is marked
the more strc ly the sharper the slope of the ascending branch of the
hysteresis loop changes, the smaller thc coercive field E. and the closer
the ""quiescent point" relative to which the field changes the state of the
ferroelectric, adjoins the regiorn of the maximum change in the slope of
the loop.

We vw.iil now determine the relaticnskip of the piezomoduli d3j and
d3y t¢ the amplitude of electric field. Substituting pciarization P=
=Pg + P, and separating that portion of the deformation which is brought
about by the electric field applied, we will obtain

Ugy o= 84y 12PP, (83 + 7} (1), (3.10m

Simultaneocus examination of this ralationsisip exprezsed in terms of
dimensionless quantities P., Py and e and hysteresis loop leads to the
well known relationship u'y (E) of the "butterfly" type (see [62]).
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Substituting then the P {e) from (3.104) into the relationships
obtained, we have

3
L LN 2: w1y e, (3.108)

and iniroducing then e=cj sin&t, we will cbtain (3.108) in the form of an
expansion with respect to harmonics.

We will examine behavior ¢f the first harmmonic ofuthe deformation
u,. and will i.troduce the value of piezomodulus d(1)= -k .
HK ik Eo

In general the matrix 3 "splits' inte the harmonics
df?--"z!?-. (3.1.9

If we limit ourselves to such fields (actually not very small in
comparison with E_) with which, according to Figure 3.9, P,, is small in
comparison with Ps, then the second terms in formula (3.107) could be
neglected and in that case u, =2+ PP {(E).

4 ?(ﬂ)
Taking into account that C(n)= hbi1d

we have
EO b4
23 = 228 iy gy (3.110)
and, consequently,
) 4% .
-‘-‘;— - ‘—%“‘L.Q‘ g1 (eg); daue "’i‘; .

1f |E| }}E‘i, then the relationships obtainad are invalid.

It is ea {\to perceive that with an incrf'ﬁe in temperature the

relatienship 4 () s like the relationship L.Eé.f‘_:l

3 s becomes more
Oin

marked.

Relationsnips obtained above in general make it possible to deter-
mine the trend of the change in diko(g)' However, a direct comparison of

(1) PO . .
4n (E) and " ‘ndicates a slight quantitative lack of coinciderce

f these relationships, which is explained by the fact that in formula

{3.108) the direct component does not appear in explicit form and the
terms N(Po + P also do not appear. This was already discussed carlier.

The effect of permanent electric field E_ may be analyzed using
similar metheds. -

The reiationship £(T, E.) wss determined in a number of works [3&‘,
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Figure 3.19). Temperature dependence of
polarization in the presence and in the
absencz of displacing field E [63].

a -- phase transition of the second kind;
b «- phase transition of the first kind.

39, 63] and it was found that near the phase transition of the first kind

4xP = Yx
_£_I. -, (T.E) =7 —m Eo.

In the case of phase transition or the second kind the relatiomship
is more complex:

il ty/ 4 1? , ~1
P g'"‘_i‘y;]fﬁ ?:+") .

where A 441

. e V“EE'

The curve of total polarization, i.e. Pg + R,(E=) shown in Figure 3.10
indicates that with the growth of E_ the phase transition becomes Jblurred’.

Attempt to explain the observed relationships £j (6k) and dj (‘i)
in an analogous manner encounters great difficulties. As an illustra-
tion we will examine .hanges taking place in tetragonal BaTi03 during the
action of mechanical stresses applied along and perpendicularly to Ps.

Expanding P, from (3.99) (6#0) into a series and substituting into
the expression for £ and djy, we will obtain:

Py (8,) = Posy + daxgtssi Pos (%21 = Paos + du3i%sai
2
o (850) ‘On!‘ + 5 (0t — PR L
2
v f0anh & Sanf1 5 Ositnes — PrdoPranl
453 ) o= de (1 4 Il Pas)[1 + T (wtons = PidersPon) o

¢ A
dy(oy,) rden{t + ‘a’.u’Pa.)li + k4 tate,, = BidaniPeo) ¢ra-

Yl
AL b

o
b

i
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in these formulas, quantities having the subscript "0" were taken
with a &,70. These expressions accurately convey thie rain trends (d.-
crease, increase) of the relationships Pg, (6)), ¢. (&) and dyy (%)
cbserved in single crystals and even in piazoceramics.

However, quantitative evaluations lead to considerable divergences
even with small stresses (6 _~-50-100 kilograms/cm2). Taking into account
of the terms containing higﬁer povers of 6 1in (3.88) and in abové formuias
does not change the situation. The essence of the matter consists in that
soluticn of (3.83), i.e. Py, (6)) has to hc examinad together with the
stability conditions (3.80) which change substantially even when o} are
small., As it was shown in [39], for a single crystal of BaT:03, with a
6&40 the most advantageous of the solutions will be that with which Pg
will be oriented along the highest of the elongating stresses or along
the smallest of the campressing stresses., For example, compression stress
62, leads not only to the appearance of piezopolarization inverse to Pg
but also to its turning by 90° 1In accordance with this, ¢; (&) and
djk{6) change more than this follows from the foi—rlas cited abuve. A
certain set of minimal stresses which can change the direction of Py of
the scparate domains must exist it dn actual crystal, In cther words, a
quantitative description of the relationships &j (6) and diy Oik) is
possible only as a result of examination of '"mechanical hysteresis!" with
the behavior charactetistics of the domains taken into account.

Par. 4. Thermodynamic Theory of Antiferroelectricity

Some c.ovstals (often isomorphous or close in structure to ferru-
electric crystals) undergo with a change in temperature a phase transition
into a state with a lower symmetry. As a rule, twinning (unalogue of the
domain structure of ferrvelectrics) takes place in this process but unlike
the ferroelectric transitions no resultant dipole moment appears. If
tne structure of the low-symmetry phase is broken up into two sublattices
having an equal but opposite dipole moment, then the crystal undergoing
such a phase transition is called antiferroelectric. The principles of
thermodynamic theory of antiferroelectrics were laid down by Kittel [64].

Following Kittel, we will examine a crystal lattice consisting of
two identical interpenetrating sudlattices with the pclarization P, and
Py corresponding to tnese sublattices. In the case of a phase transitionm,
expansion of free energy Ap with respect to the powers of P; and Fp, may

LY

be written in the following form (compare with 3.7}:
Ap(Py. Py, T)om Ay 1 (P4 P]) 4 22,0y + A (P + PY). (3.111)

The coefficients t, g and h in (3.111) are functions of tempera-
ture. From (3.111) we find:

oA,
’E-;;:-UP.J-CPO + 0P (3.112)
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And thus, sjontaneous polarization of one sublattice Pg,= <Pgy 1s
equal to:
—~2f
P:.;—.{Tr-. (3.113)

Polarization AkPa + PbQPa in a weak electric field AE may also
be determined from (3.112):

28E = 2/3P 4 AP 4 (ZAPL AP, (3.114)

Jhence we find dielectrir susceptibility:

LA (3.115)

=3 = Tu=n"

At Curie point Pza=0 and, consequently (see 3.113), f=2g. There-
fore we find the following frem (3.115):

® (3.116)

(13
cnl-§-4:y_r2.=,1+7

in approaching Curie point from antiferroeiectric modification. In un-
polarized state, fourth-order terms in (3.114) should be neglected. After
this, we will find:

&x
b T (3.117)
When T=8, (3.117) is reduced to the equaiity {(3.116). 7hus, di-
electric constant is continuous at the transition point., 1In doing so, it

does not necessarily reach large values. If it is assumed that the value
of f near ¢ changes in accordance with the formula (compare with 3.3)

/=%;+1(r—e), (3.118)

we will obtaian the following from fcrmulas cited above (whan {A >0):

Vb KO0, (3.119)
ool Ay o e (3.120)

g2 (T—%*

4.-2+£=Z—l+;-+—k:;—_-.7. (3- 121)

With A)O the low-temperature phase will be antiferroelectric and
dielectric constant has a maximum at T=8. With A <0 the high-temperavure
modificarion will be antiferroelectric and dielectric constant has a mini-
mum at the transition point.

If it is assumed that the cozfficients g and h weakly depend
on temperature, then the jump in entropy AS and thermzl capacity at a
constant pressure OAc¢, may be found from (3.111) in the case of anti-
ferroelectric transition:
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3w (el 2 (), (3.122)
El] 8 [ af ol
"'r”“('«?f r"T(?T)r(?l‘)r’ - (3.123)
We will examine now phase transitions of tre first kind. For this
purpose, as well as also for the case of ferroelectrics, it is necessary
to take into account the sixth-order terms ir the expansion of free energy
with respect to the powers of polarizatiorn:

Ap== Ag ot 1Pyt P gPo by + A (PY 4 P) 1 1(PL 4 PY). (3.124)

We Jind the foilowing from (3.124):

d4
E-U_F:—:’/P.'*‘KP. +UIP=+G”'-'.'_ (3. 125)

Thus, spontaneous polarization of one sublattice in antiferroelec-
tri ., phase (P.3= -Pgp,) will be defined by the equation:

P4, 4 4hPSy + (2] =-g) = 0. (3.125a)

At Curie point the thermodynamic potential with Py.= -Pgh*0 and
P =P,,=0 must have one and the same value.

Taking (3.124) inte account, we find the following from that con-
dition:
2 — ) + P, + 2Py, =0 (3.126)

Solution of the equations (3.125) and (3.126) gives:

=t l (3.127)
Y Te=$
P:-"‘ 2]
From (3.127), we find:
22— ek Toab, (3.128)

The reiationship (3.128) is a condition defining the tramsition
point and, therefore, it is natural to assume the temperature dependencze
of the quantity f near O to be in the following form:

£ A
l-!?;-.k—‘,--{-l(r-.ﬁ)_

In the approach from the antiferrcelectric and unpolarized phases
the dielectric constants £~ and §+ at the transition point prove to
be equai respectively to:

w« ¥ y R F L I g, ‘
I~ (2.129)
* o L. r——————
Comlgdngtet 4 w+:'j
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And thus, in.fane puase transition of the first kind the dielectric
constant experiences 3 ju%p at T=@.

It should be ncuad that the character of a transitiou is determined
by the sign of the coeificient h. An investigation similar to that car-
ried out in subparagraph 2, paragraph 1 of this chapter for ferroelectrics
indicates that transition of the first kind occurs when h <0,

Kittel theory set forth above was later supplemented by Tessmann
[65] who examired the behavinr of an antiferroelectric in an external elec-
tric field, and by Mason [66] who toock electromechanical effects into
account using antiferroelectrics of the type NH4H2PO4 as an example.

In the =ork [67] in which Kittel theory was generaliiad for a three-
dimensional case, a study was made not only of the transition from anti-
ferroelectric state into a paraelectric state, but also a study of phase
transition from antiferroelectric state into ferroelectric state. In
doing so, transition of the first kind was examined with anisotropy and
deformations taken into account. Behavior of an antiferroelectric in an
externai electric field was also exsmined in the work [67].

In the investigation of phase transition from antiferroelectric
state into paraelectric state the free energy Ap was written in the
form of a series with respect to the powers of components of polarization
of sublattices ¥; and Py and of the deformaction tensor with accuracy
to the fourth-order terms. After this, solutions were found from the
following set of equations: \

aky
‘—,T,::—-E'o
a4,

7, = e (3.130)
dAp

— Gy,

where €, are components of elastic-stress temsor. A study of the set of
equations (3,130) leads to the folloving results (which coincide with the
results of the work [64]).

Pieczoelectri. ¢ffect must be absent in an antiferrcelectric; lat~
tice symmetry decreases during the tramsition owing to the presewe of
spontaneous deformations. In the spproximation used, Curie point of an
antiferroelectric does not depend cn pre:sure. In additinn vo this, spon-
taneous polarizations Pzs (Pps), thermal-capacity jump and dielectric con-
stant near Curie point were determined in the work [67] more rigorously
than in [64].

More complex cases are examined in {67} only for unidimensional
model. Analysis of phase transitions of the first kind differs from that
carried out in the work [64] by sakingpgnto account all possible i{nvariants
(for example, invariants of the ty pe an omitted in writing the (3.124)).
In doing so, the gualitative conclusions remain the sama.

To investigate transitious in crystals in which antiferroelectric,
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ferroe ‘ctric and paraelectric states are pogsible in the absence of an
externs . field, Ap is written in the fom of (3.111). The values of Pyg
and Ppg are found from the following equations:

A g4 :
—-a—“,’s(j' ___P s (. (3'1311
Uy * ol

Stability <onditicns (i.e. conditions for the minimum of thermody-~
nymic potential {3.111)) havz the followins form:

e

dthy il

— ) e 0; 1723
dP:. dP:. (30 l.‘ 2}
JAp aA, |
&pi, ""*:"P T )
L B (3.123)
d. u"a“ @ Ph

We find the fcllowing from (3.131), (3.132) and (3.133).
1. Paraelectric state (P =Py =0) is achieved if >0, -f<g/2<¢.

2. Ferroelectric state (P,;=Ppg) is achieved if fig/240, f4g<0.
In this case

2 + 2f
Fag =~ 4h

e
-

Antiferroelectric state is achieved when
§ - £D0; g - i>0.

2 _g~2
L TR

Pes Pt
Pa ety ey Pass Phy
H< i » "‘\

{u ‘-f I -af z'(;
L o Yo F;

Figure 3.11. Relationship of P, and Py
to g

a -- ££0; b -- £>0.

f

With 2 change of temperature, relationships between the coefficients
f and g may change and accordingly phase transitions will take place.
Relation of spontaneous polarization of sublattices P,;, Pps to the para:
meter g with different sign of the parametcr fer the case of phase tran-
sition of the second xind (i.e.» h2>0) is shown in Figure 3.1%.
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Figrre 3.12, Hysterecis locp for an
antiferrcelectric,

foesulzs of investigation carcied ou~ in "67] on the behavior of an

A ery »teg. 9 © an ext--nal electric fieic are reduced in the main to
t° reotlowar . st teansition frea ferroeiectric into antiferroelectric
s..ry {in ttk .. .. of a phase transition of the second kind), dielectric
conscant ded . <s by four times., In a reverse transition it aiso under-

goe< discontinvity but becomes irfinjte at the trausition point. 1In

strong elentric fields the crystal changes from antiferroelectric into
farroe® ‘ztric state wirh an unusual hysteresis loop forming in this process
(Figure . .12). Griticai field strength E.. corresponding to transition
intc ferroelectric stace was calculated in [67]:

ﬁ'{"'%"f’r(t—h"'- (3.13%)

A later attempt to generalize thermodynamic theciy of antifercoelec~
trics for a three-dimensional case was undertaken by Cross [68]. Cross ex-
anir 4 2 pseudocubic crystal consisting of two interpenetrazing sublati:ces
with the pelarization #) and Py. Cross represents free energy in the fim
of a series according to the even pouwars of the quantities:

Powm Pyt Prgl pyo= Prg— Pyl
P'_pl"'"r},: ;!'-15’"—?.';
Tpmr P v Tot pamePpo- Py,

iting it in a form analogous tc Devonshire': exprecsion (3.599). Mazking
use of such a frec-energy function it is poss.ble to describe dielectric
properties of NaNbO3 in 211 phases.

Tt should be noted that as in the case ¢f ferroslectric transition,
to construct a consistent thermodvnamic theory of antiferroeleciricity it
1s necessary to determine the transformation preperties of parameter which
characterizes antiferroelectric transition [69]. This question is exsmined
in detail in the work [69] using antiferroelectric tramsition in (NH4) PO,
as an erample and employing the general group metnod.
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CHAPTER 4. MICROSCOPIC (MODEL) THEOXY OF FERROELECTRICITY

The first attempts to explain the appearance of spontaneous polari-
zation by means of some atomic mechanism date back to the time when the
only known ferroelectric was Seignette's salt.

According to hypothesis stated by I. V. Kurchatov and P. P. Kobeko
the reason for the anomaly of the properties of Seignette's salt is the
appearance within a certain temperature range of preferred orientation of
rotating dipole groups, whisb disappears at a certain temperature similarly
to the way this takes place in Languvin theory. Thke interest in micro-
scopic theory of spontaneovs poularization considerably increased immedi-
ately after the diszcovery of ferroelectric prope-ties of BaTiOj.

Most of theoretical investigations were based un the assumption
that spontaneous poiarization is 2 result of displacement of these or other
ions (T’ or 0 icas in BaTiOj, proions in Seignette's salt or KH,). This
state is maintained by a self-consisteat field (i.e. by the field defined
by the displacements of these ions). Phase transition, i.e. the disappear-
ance of Pg, is brought sbout by the preponderance of disordering action of
thermal movements of ions over the action of effective field which holds
the ions in displaced positionsor provides a certain preferrved direction
of statistica! distribution of elementary dipole moments.

Two types of models have appeared in the process of forming these
representations which are considered valid even at the present time in
spite of these or other refinements.

1) Model of -rder-disorder type in wnich it is assumed that "active"
ions may be in one of the minima (displaced relative to the center of the
cell) of pacential function describing its state (Figure 4.3a). 1In this
case, spontaneous polarization i3 a result of preponderance of rhe numbter
of ions located, for example, in the potantial well 1. T7This model was
used to explain the nature of ferroeiectricity in Balilj 1], Seignette's

satt [2], xupo, [3], etc., and is also known under tne aame of “model of
jczal miciza.m

7) Model of "displacement" type. Above Curie point, active loms
are on the average in the center of potential well which as a result of
the action of seli-censistent field becomes asymmetrical when T T8, i.e.
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Figure 4.1. Potential function with two
minima (a) and with onz min-
imum (b).

its minimum is displaced alung one of the directious allowed by the lat-
vice symmetry (Figure &4.1b). Thus, the average position of an ion proves
to be displaced and thiec leads to the appearance of Pge This model which
iz also called a model of anharmonic esciliaters, was succesa:fully used
ir a whole series of works devoted to theory of BaTiO3 [4, 3] and other
ferroelectrics.

Phase transitions of the "order-disorder" type and transitions of
the ""Jisplacement”" type are difrerentiated in accordance with these two
models. OFf course, in actual cases these models do not “countervail'

each other and transitions of mixed type, for example in KH2POy appar-
ently exist (see also chapter 5, paragraph 4, subparagraph 3).

It should be noted that the entire process of formation of micro-
scopic theory of ferroelectriciry may be characterized by two main direc~-
tions of their development, which by no means exclude each other,

1) Medel theories of the above-menticned type, constructed on the
basis of these or other assumptions concerning the form of potential relief
along which active ions are displaced. The movement «f these ions takes
place in a time-averaged self-consisteni. field. The question of the re-
gion of existence of Pg# 0 is reduced to 2 determiuation of counditions
under which nouzero displacements of 1ons averaged over the ensemble (or
time) are allowed.

2). Dynamic theories, developed somewhit later, in which the field
is considered to be dependent on instantancous positions of all ions which
perform related vibrations relative to the equilibrium positicns in the
lattice. Phase transition points are defined as points of a loss of dynamic
stability of the lattice relative to one of its normal vibrations. An
adva~==2> of this approach is tha. it makes it possib.e to connect the
characteriscics of the ¢idvalidh specilua 21 Lhe L3clice wills unomiatis.
in the triasition region.




Dynamic theory to which chapter 5 is devoted, has very many c.xmon
points of contact with model theories examined in the present chapter.

Jarnes and Wigrer [6] theory in which spontaneous polarization is
viewed as a result of spentaneous change in the symmetry of functions cde-
fining the state of lattice elactroas appearsd in the beginning of the
1950s. These representations give rise to certain cbjections on points
of principle. However, at the present time, marked trends toward the
further development and refinement of the so-called electron theory of
ferrcelectricity exist.

1t should be noted that perfection cof theories based on represen-
tations concerning displacements of fons is possible not only by means of
using the apparatus of dynemics of crystal lattices. Considerable refine-
ments can also be achieved within the framework of statistical methods 1if
rough model representations are abandoned and if tke short range of icns
is taken into account on the bas!s of more accurate representations, in
particular those involving the use of Bogolyubov mechod, as this was done
in the works [7, 8].

Interest in tlz models of local minima has also resumed at the
present tima. Examination of phase transitions of the order-dizorder
“ype in terms of Ising model with lattice vibrations aud quantum effects
taken into account [95 opens new possibilities of expiaining and classi-
fying the characteristics of ferroelectric transitions in different crys-
tels,

Big prograss has been recently achieved in theory of phase transi-
tions in hydrogen-contairning ferroelectrics. The latest works by Blinc,
et al, [10, 11] and a aumber of works [12-16] on two-dimensional models
of such crystals qualitatively explain many important features of phenom-
ena taking place in them.

Par, 1. Free Energy in Self-Consistent-Field Mathod

Generai relationships which are used in various model theories
based on representations on the displacements of ions are derived in
this paragraph. Expressions obtained on the basis of self-consistent-
field method are not connected with any concrete form of potential re-
lief and can be made use of in the analysis of models of local minima
and anharmonic oscillators.

1. Free Energy

Displacements of ions bring about the appearance of strong effective
fields whowve action {s conducive to fixing t*-: iong in their displaced
noziticna, Spoatansous polarization developing iu <hir nrocess is alser
AoCausigd fox L atoctisr diocle mmusts the aprectrnga oF vhich {1 cope
nected with the action of »ffective fields on the electron stells of jons.
Interaction of ions is taken into account in two ways: interaction of the

nearest neighbors is defined by a certain function of coordinaces Ug (x,
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¥» z) which reproduces the energy relicf along which ions belonging to

the k-th sublacttice *move"; interactio. forces, i.e. electrostatic forces,
are introduced by an addition to Uy (x, y, 2z) of the term z'y (Frg) which
is equal to potential energy of the ion with a charge 2k displaced in the
effective field Fi by tha gquantity rk. Effective field depends not on the
instantaneous but on the average coordinates of all of the remaining ions,
and consequently, on statistical properties of the entire crystal latrice
as a whole,

In accordance with these representations the investigation is re-
duced to the solution of two problems, jindependgant in a certain sense:

1} calculation of effective fields acting on different ions, and
also calculation of tctal pclarization as functions of applied field and
average displacements of iens;

2) writing and so.ving equations defining the electric and thermal
state of the crystal under the conditions ot thermodynamic equilibrium;
these equations make it possible to determine the phase transition points,
temperature Jependence ¢f spontaneous polarization and dielectric constant,
entropy jump, etc.

Lorenz method or Ewald method (see par. 2) is used in the calcula-
tion of effective fields acting on different lattice ions. The calcuia-
tion in the process of which the crystal lattice is divided ints m simple
monatomic cubic subiattices (for BaTi03 n~=5), leads to the following for-
mulas for cubic and tetragonal crystals [3, 17]:

Fumtled 3 by Pres, (4.1)
k=1
P‘u} " ,% P g
s (‘:;‘h e (4.2)

Py is here component of total polarization of the crystal, ng'x is

electric moment of a unit of volume, forming as a result of displacement
of ions of the k-th sublattice from the symmetric position (Psk,x=ﬂz'ksk,

where N is the number of cells in a unit of volume and X% -- componencs of
the average ion displacement), E is component of the applied field, vy,,
Yns pkk, and €, are cecefficients dependent on the polarizabilities and
cgarges of ions and on the lattice structure.

It is essential to underscore that all of these coefficients were
calculated on the assumption that the i0ns are point fons. Therefeors, an
exact coincidence ~f theory and experiment can hardly be expected, aru it
is expedient to cocus attention on obtaining the most impertant qualita-
tive characteriscics oi friroelactrics. 7% should also be rem bered that
{4.1) is a 'inear approximation of the relationship Fyy (Ei» Pi).

1f it is assumsu that appearance of spontaneous pelarization is
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brought about by ions belonging to one sublattice (for example, titanium
ions), then the sums in (4.1) and (4,2) will contain only one term:

’DJ—YIEJ'*'?;P’tn (5.3)
Pu'“ 7’£=+';Pﬁ:o (4 4)

Equation of state for a crystal lattice are determined by means of
free energy of the following system:

AwNkinZ, (5.5)

where Z 1is a statistical integral.

In most cases the calculation of 2 is carried out without taking

the quantum-mechanical effects into account and is based on the following
agsunaptions:

1} potential energy of the ion is defined by the function Uy (x,
¥s 2} - zk(Firy), and integrals describing the state of the separate ions

are multiplicative, which is equivalent to neglecting t e correlations
between instantaneous positions of these ions;

2) appearance of spontaneous poiarization is brought about by ions
called henceforth ferroactive, which belong to sne sublattice {for example,

+ . . .
Ti ions in BaT103). Because of this, statistical distribution of these
ions alune is taken into account and temperature effects connected with the
vibrations of the structural elements of a crystal lattice are ignored.

In accordance with these represeatations, statistical integral 2
is written in the following form:

&L

o [ EskTm,

- {®, p. Y=g} (F, »
§ e {-[- ke S Bl ,,‘..} , (4.6)

where m, 1is ion mass and h -- Planck vonstant.

Substituting €4.6) inte (4.5) and differentiating with respect to
Fiex» we will find the following relation:

2 A
Psis"‘é:}“,:' (6.7)

Expressing the Fy, in this fomula according to (4.1) and (4.2)
iu torms of Pgyy and E, we will obtain 2a equation the solution of which

gives temperature dependence of spuntanecus polarization (with Ex=0) and
dielectric constant.

Such is the .<keme and Sa i~ srPluxliaiions of theories of fonic
Jdispracements developed at the present time. They differ from each ethar
by the form and methods of defining the function Uy (x, ¥, z). Thus, in
Mason and Mattias [1} theory, Up {x, y, z) for BeTiO3 is given ir the form

of six local minima displaced relative to the center of the cell, Devon-
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shire [4] and Slater [S5) write U, (x, y, 2) in a form characteristic of an
anharmonic oscillator,

We will examine a more general case based on the assumption [17]
that oscillations of all icns of a crystal lattice take place.

In doing
so, we keep the assumptions made earlier as being valid.

In accordance with the foregoing, we will now write the statistical
integral in the following manner:

1 (2% T )"“ Uiz, y. 8)—24 (F
z-.--’-v.]..l"!l{[__1 »y .'Sup[_( als. ¥ :r s ( t’:))“.]}t' (4.8)

vhere m 1is the number of sublattices.

In a particular case (for example, the model of local minima in
Mason's and Mattias' interpretation), when Uy (x, y, z) can assume only

discrete values, the integral in {(4.8) should be written in the form of
the following sum:

* - .
2.,4_3-.’:-—:;(5‘;&)]‘]‘ (6.9)
=3

vhere n 1is the number of discrcte states with energy Ujk' vj is volume

deteruined by statistical weight of the state Ujk, im the case in question
r, is the average coordinate of an ion which is in this state,

We will limit ourselves to the assumption that Uy has reflection
symmetry and that the integrand decreases so rapidly with the increase of
r;, that without impairing accuracy, integraticn with lespect to the volume
of unit cell may be replaced by integration with infinite limits.

For this case, free energy is e-tual to:

- 2
A--mr%%jjﬁﬁﬂﬁi_
amt he

-—
’

b

in {i ep (-— ———U' — :;r‘__ﬂ’;h) ) fv.]}.

(4.10)
Next, we havet
, n N3 S t.expj-: —U—*:—%}L"'—')- !l% a4
oo NIty o= —7 - .
" x S"P[" [ :!ru’.&)_}“. s {(4.11)

Dirferentiating (4.10) with respen’ tc all F.., we v'li obtiin a
svstem ~f 3> eqrarfors 2: the tollowing towm:

Pe—02a(T. Epn By Es3 Poter <o Poras veve Fyma) =0, (4.12)
P Bynsi Pt ()
"htl’e '}.( v Bgieee; Vgt Fea Taet, ’.‘.
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Assuming all E;=0, we will obtain an ecuaiion of state for a ferro-

electric, which defines the .emperature dependence of spontaneous polariza-
tion:

Plu—9a(T: P, ..u PYy

ot wees PlL) =0,

(4.13)

We will examine first a particular case important for the further

examination. We will assume that all ions make purely harmonic oscilla-
tions, i.e. all

Uis. 5. %) g (3i-k gt 129

In this case, integration of (4.6) can be easily carried out and,
thexvefore, (4.12) will be written in the follow’ g form:

Py~ 3iFre b, (4.14)
Na

. k
where mk= > is polarizability of ionic displacements.

Substituting (414) into the preceding expression (%.13}, we will
obtain a system of linear equations of the following forsa:

-

E "‘g’lk' + l..-) P;...‘ 22},
14

where

S = 1 when k'=k
kk? 0 when «'s=k.

Generally speaking such a system has only zero solutions, i.a. the
crystal is paraelectric. However, in a particular case when the determi-

nant of the system with the elements o‘ltﬁkk' + Skk' vanishes, nonzero
solutions of the following form are possible

s 3
P Tk

where Ay, is an algeliraic compleme.st of the k-th line and T is some arbi-

trary constant. However, these wulutions are unstable. This can be easily

shown if we calculated direct]. the free energy which in this case is a

function of the squaves of Pékx which is infinitely decreasing with the
increase of Pgye

A

srahla ferreslectric contigpuration can exist only when the ex-
pression

for free energy of the crystal contains terms that are propor-

ticnal at least to (ngx) and the aggregate of which forms a quantity

smaller than zero, and the higher powers of Pskx making up together a
positive quantity. &
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Terms containing high powers of P;kx provide the saturation effect

of spontaneous polarization and may appear in the expression for free
energy if the ions of at least one sublattice move under the conditions
when nonlinear forces are in operation; in other words, if at least one
of the functions Uy (%, y, z) contains terms of higher powers than x%, yz,
z2, It is precisely these terms that account for the temperature and
nonlinear effects characteristic of ferroelectrics.

As regards the first condition -~ the requirement that terms pro-

portional to (Pskx)2 make up a2 negative quantity, it is necessary in
order that the fre® energy A(P;) have a minimum when x~P.5F 0. This
condition is realized owing to a strorg long-range action -- effective
rieid Fy (PS) which "breaks" the symmetry of the function Uy (xyz).

Ions performing harmonic oscillations indirectly affect the tem~
perature characteristics of a ferrocelectric; taking them into account
when calculating the effective fields and polarization will introduce
corrections into the expressions for the coefficients in (4.3) and (4.4).

2. Conditions for a Ferroelectric Transition
Accerding to the theorem on implicit functions [18] the existence
of 2 unique and finite nontrivial system of solutions cf equations of the

type (4.12) is possible with those values of P°  with which the functional

gks
determinant
- g?lc _.ﬂ‘_-
apr orE,
o L (4.15)
I’P;«'. W tves dp.’,.‘t

is not equal to zero.

The equality of the determinant to zero indicates a loss of '"suabil-
ity" »y the system (4.12). 1It is obvious that the temperature of transi-
tion into paraelectric state will be found by substituting into (4.15) the
trivial soiutions of th~ system {4.12):

T S
gly gmz

A study of the conditicn of cquality of the determinmant (4.15) to
zerc together with the equations (4.12) makes it possible to draw a num~
ber of conclusions concerning permissible types of solutions of these
equations.

1) With a phase transition of the first kind {(4.15) may vanish or

become a complex quantity when P§i<=# 0.
o+
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1) The system (4.12) is satisfied with the solutions of the follow-
ing for:

Pum0, 20 Py m Py o P, =0 Py 0 P 0. (4.16)

In other words, low~temperature transitions similar to those which

take place in RaTiO3 are allowed in principl: when several active lattices
are present,

2) Solutions of the following form

PavU. &6 PYy, 20 upa Prrse cias Py #

are not allowed, i.e. for each specified component Pgi, one and only ome
rtransition is possible with which all spontanecous displacements of several
active sublattices disappear at once.

3) Solutions of the following fomm

Pu=0; Phpe vens Phage oos Pl $0

do not satisfy the system (4,12). In other words, antiferrvelectric con-
figuvation can appear only as a result of '"opposing' displacements of ions
belonging to one and the same sublattice. From the standpoint of micro-
scopic theories exemincd herz this assumption is reduced to a formal division

of statistical integral pertaining to a given sublattice, iunto two multi-
plicative groups

Zyea (Z) 0 {Z

and to 2 doubling of the number of equations of state. However, with such
an approach the question of the causes of appearance of antiferroelectric-
ity does not gain a more thorough (~-omistic) interpretation in comparison
with the application of Kittel thermoudynamic theory (s-e paragraph & in
chapter 3).

We will return to the equations (4.12). It dozs not appear possible
to find a solvtfc. ol these systems of equations in a general form with
arbitrary Uy (x, y, z). It is, therefore, expadient to search for approxi-
mate methods of solving these equations for each concrete fomm of Uk (x, y,
z)s i.e. separately for each model theory proposed.

For all methods of deficing Uy (», y, z), when determining Curie
point it is necessary to use the condition of the functional determinant
becoming zero or appeurance of complex solutions.

E As an illustration we wiil examine this rule as applied to the
E existing model theories in which the presence of one ferroactive lattice
is assumed. Equations of state are written in the following form:
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Inasmuch as Fg,= ﬁpsx and sx- PPsx 1t becomes easy to express
her2 the equations in terms of the components of total spontaneous paleri-
zation. These equations nmust coincide with vespect to the sense with the
equations of state obtained as a result of differentiation of free ensrgy
A (T, Pgy, P_, P;,) formed according to thermodynamic theory of ferzo-
electricity j_{f) .« Therefore, the following may be written:

» QAT, Pass Prys Purll
,{_;of._,;(r, Pres Py 1'..)]— 0P .

where v is a dimensionless multiplier.
Next, we have the following for the determinants:

okt o
4y ap., ap,,.w,,

It follows from this that in transitions of the second kiad the
vanishing of the functional determinant takes place when the right member
of (4,17) is equal to zero. According to thermodynamic theory of ferro-
electricity this inaicates a loss of stability, i.e. a. absence of the
minimum of free energy. In the case of transitions of the first kind it
may be expected that (4.17) will vanish when T*0 (T2>9).

In the region of tetragonal symmetry and above Curie point the de-
terminant has only diagonal terms:

1
i wr — :!5’“ 4] 4] '
(]
G L .ﬂ'_ ]
[T
{ de
[
l ¢ o [ -1

Thereforz, one of the conditiong fer the determinant hecoming zero
will be:
1

*
—— e
]

| L

Msking us> of (4.12) and (4.10) we will find:

WS T (4.18)

e ) e . :
or if x=0 at Curie point, then 1w PN TR,

(4,193
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Inasmuch as faﬁz'x is effective field vpon displacement of all

ions by a quantity x, the relationship obtained defines the magnitude of
its average potential energy as of the entire field upon the disi:lacement
of the sublattice. This corresonds to the case ¢f the so-callad maximum

oscillations (g=0) which play the main role in dynamic theory of ferro-
electricity (see chapter 5).

Formulas (4.18) and {4.19) are also a condition for phase transi-
tion, expressed in the language of fluctuvations in the displacements of
active fons, 1In §he case of a phase transition of the second kind, when
=8, x=0, A x%=xZ and the condition (4.18) exists. In the case of a
phase transition of the first kind, at the transition peint x5#=0 the nuclei
of the new phase appear in the foim of fluctuations even before the dis-
appearance of spontaneous polarization and, consequently, the condition
must be more complex. We will note that fluctuacions in transition region
are finite owing to the "seif~consistency" of the field F, which does not
allow the appearance of large values of Pj in (4.11).

Forrmla (4.18) makes it possible to determine the order of fluctua-
tions of polarization:

— kY ;
APEox N2(3')? ST wm L:i 107 eg. CICE,

which agrees well with the results of thermodynamic theory (see chapter 3,
paragraph 1, subparagraph 3).

Par, Calculation of Internal Electi:ic Fields

1. Determinatiorn of Internal
(Effective) Field

Internal field P acting or an atom in a crystal lattice may be
represented in the foilowing form:

F=E+Ey. (4.20)

Here Eq is an evternal alectric field and E1 is a field acting on
the atom in question from the side ¢i the other atoms of a unit cell, fhe
field Eq is defined as followss

Ey = E diparie, -~ rfp,l.

3 (4,21)
where pjy is dipole =ment and ri -- the radius of the vector of the i-th
atom of the lattice.

We will examine first the simplest case of a diatomic cubic crystal
(for example, of NaCl type). In this case, to calculate the field Ej it
is convenient to separate mentally from the entire volume of the crystal a
sphere surrounding the atom in question and havirg a radius of several
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lattice constant. (the so-called Lorentz sphere). Taking of the micro-
scopic structure of the crystal into account, i.e. making use of the
expression (4.7Z1) for the calculation of intcrnal field, and the cal-
culation of the lattice sums are necessary only inside the Lorentz
sphere. However, for diatomic cubic crystals the corresponding contribu-~
tion of Si into the field Ey 1is identically equal to zero. This follows

from the considerations of symmetry. Outside the Lorentz sphere one may
:xainine the crystal approximately as a homogeneous continuous medium with
volariz.ition P on the surface of the specimen. Calculation of the field
E¥ in t .2 center of spherical plane in such a medium is a classical prob~-
lem in :lectrostatics. The resalt of the solution of this problem has the
following form:

r.;..-f.} r. (4.22)

Finaliy, charges which had appeared owing te polarization on the
surface of the specimen (depolarizing field EY) will make a contribution
to the field Eq. In the simplest case when the cry:tal is an ellipsoid
{or a shapz which is an extreme case of an ellipsoid) and the external
field Eg is oriented along one of its principal axes, the depolarizing
field is connected with the polarization of the specimen by the simpie

relationship: S

(4.23)

08

o4

Figure 4.2, Relation of depclarizing
factor h to the ¢/a ratio of the prin-
cipal axes of ellipsoid.

The quantity M 1is called depolarizing factor. 1Its values feor
different shapes of the specimens have been calculated in the works [20,
21] (see also approximate calculations for the other shapes of the crys-
tal [22, 23]7. 1n Figure 4.2 is shown the relation of M to the ratio
of the axer ~¢ ellipsoids of revolution [24}, We will ulso note an im-

portant propet.¥ of depolarizing factors: My + My, + 1 =4T  where M;, My
and M. are depolarizing factors in the direction of three principal axes

of the allipsoid.
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We will now examine an internal field acting on an atom in a cubic
crystal placed between capaciter plates:

F“go-i-h!’-hl’-g-%:r. {4.24)

Here Eg 1is the field between capacitor plates in the absence of a
dielectric. Upon insertion of a dielectric the field in the gap batween
the surface of the dielectric and capacitor plate beccnes equal to Egt4St.p,
the third sddend in {4.24) corresponds to a depolarizing field, the fourch
-= to the field of Lorentz cavity. In a noncubic crystal, one morz addend
corresponding to the field created by atoms inside Lorentz sphere would
appear in (4.24)., We tave the following from (4.24):

Voot 1P, (4.25)

It may be seen from (4.25) that macroscopic (i.e, averaged over a volume
winich is large in comparison with the unit cell) field in the crystal in
the case under consideration is simply a2qudl to the field Eq.

Consicecations given above bear first of all an illustrative char-
acter. Ewald transform [25, 26] which gives a systematic bas’s for the
examinaticn of the internal and macroscopic field in an arbitrary dipole
lattice should be made use of in more complex cases.

2. Macroscopic Field in Dipole Lattice
and Ewald Method
We will examine the dipoles
P (b) e peteit) (4,26}

located at the poirts of Bruvais lattice (x(bY=hja; + hja; + hja, where

21y 39 and aq are Lbase vectors)., If qa<§1, wh?re "at {s lattice coustant,
then such a Bravai: lattice may be approximately exaained as a continuous
polarized medium with macrcscopic polarization:

p(x)md e, (4.27a)
(Here - 1is the volume of vnit cell)., Correspondingly, it is possivle to

de ermine the macroscopic (i.e. changing little at distances comparable
wi.h "a") clectric fielu E with the aid of electrostatics equation:

dh;éuy+urun_e. (4.27b)

Only the irrotational component P (x) makes a contribution in
(4.27a), It is easy to ascertain that this component is parallel to
qe Therefore; on the basis of (4.27b) we have:

£ (;) e = AxP {X).

(4.28)
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Taking (4.26) into account we find from (4.28):
§ .
R =5 (3)- (5,25

The relationship of macroscopic electric fleld to the directivn
q-20 has the same physical sense as the depolarizing facter M in the calcu~
lation of internal field by Loreatz method: it takes account of the de-
pendence of depolarizing field on the shape of the specimen.

Effective field F naturaily differs from the macroscopic field E.
An evact expresslon for the field F(x) has the form:

NG e‘wih)
’*‘*’-}g‘ X E ELITT (4.30)

Using Ewald transform it is possiblz to reduce the expression for
F(x) to the sum L (x) and to the rapidly converging series not dependent
on the direction o~¥0, j.e. Ewald method makes it possible to separate a
wmacroscopic field from a Coulomb field and ensures rapid convergence of
lattice sums.

Follcwing f£wald, we will make use of the integral relationsaipt

. @
2 S PR T
¥x
o

1

=TE = (4.31)

Making use of (4.31), (4.30) may be written in the following form:
ch'ﬁ,—. S {% 2"(' {—ix(h) =~ al*:7 4 fqix (h) — XI)} ' ¥dp. (4.32)

It is easy to verify that the expression in braces is a function
x with the periodicity of the lattice. Consequently, it may be repre-
seited in the form of an expansion into Fourier series whose coefficients
w11 be equal to [27]:

(e Medre = i by by,
=with respect v .zm,g,...

tc the cell]

{% e ww—««:uw} ey (4.33)

[The summing in (4.33) is donz over all vectors of reciprocal lattice].

The sum in (4.33) is equivalent to integration by space withk the
craputation of the iategral giving
‘“x. “. -',]--?%-exp{ M} R

Tw (4.34)

Thus, the sum within the braces of the ezpressicn (4.32) may be
i s 2
written in the fullowing fora: '\'_i"g""{ -|xm—-x!r‘+lqll(b)—xl)-zwu"“"-

_lgusge
-2 35 Y e (.35
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The equality (4.35) is callea theta-function transform. The se-
ries in both members of (4.35) converge with large and small values of p
respectively. If the integral in (4.”5) is divided into two rarts and
both expressions are made use of, then by a successful selection of the
partition parameter it is possible to achieve a rapid convergence of the
series. With q~#0, effective field (the calculation of which is especially
imperative for ferroelectrics) ralculated with the ald of Ewald methed
has the following form:

-— LLIK 7Y !
R T (4.36)
&

This result is easily generalized for the case of o complex lat-
tice. We will number different atoms of the base with the symbels v,
Then we have:

4 [ i .o
'4'--727;7." E’P:-;--;.Zﬁr.p.- (4.37)

34
Here ﬂ and ?ik ara structurzl coefficients of internmal
Lorent- field, calculated in Ewald method by the following formuia:

B e B0 D, Mo (R —
v (4.38)

hd XION
~ T gﬁ ®0 ) 6 (4B e g 4y 20— am,

Here x®and xVY are vectors connecting the origin of coordinates
with che atoms s 2nd v of the zero unit cell, xhv is a vector dravm
from the point corresponding to atom m of the zero uni: cell to the point
corresponding to atom v of the cell with the number h, and R is parti-
tion parameter of the series.

~

In addicion to this, the followiug nctations have been introduced:
Ba=goges HUIED,

where -

3(“3%-6%Sf“?m

¢(t)-:; .

A program for the calcuiation of Lorentz coefficients [28] on the
electronic computer BESM-2 using formula (4.38) has been drawn up at the
FTI [Physical Engineering Institute] imeni A. F. Ioffe. The program pro-
vides a quick and accurate {with accuracy to the sixth decimal point) cal-
culation of the coefficients ’%k. for crystals of any structute.

In numerical calculations by Ewald method withoutr the employment of
electranic computers it is convenient to use tables of special functions
given in the work [29]. These tables, used in the calculations of Lorentz
coefficients for the ferroelectrics KH2P0; [30,31] and RaN2 2z, 33] cen-
siderably reduce the labor consumption of umerical calculations.
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3. Effective Flelds in Compiex
Dipole Structures

In the preceding subparagraph we examined an internal field acting
in a dipole lattice and considered in doing 50 chat the distribution of
dipoles on the crystal lattice was known to us. However, in the examina-
tion of internal fields in ferroelectrics the electron polarizability and
effective charges of ions are usually considered known. But the dipoie
moments are cdetermined by calculation. With such a method (see, for ex-
ample, [34] and the bibliography given in this work) the caiculation of
internal fields is carried out ir the following manner.

The internal field F is written in the following fcim:

L,

where F, is an intevnal field created by the point charges of iors, and
Fg is an internal field created by point dipoles. Ia according with the

foregoing, the internal field Fé“ acting on the atom . is equal to:
Ty LR (4.40)
&
The field F3 may also be represented in the foliowing form:
i "“".2"' (4.41)

v
Here ﬂ:k are structural coefficients of the internal field,

v
£V are structural sums for s lattice of point charges whirh can zlso be

calculated with the aid of Ewald method [34], and =z, 1is effective charge
of the atom v, The depo!srgzing ficld was omitted in (4.40). As may
be seer from ~he subparagraph i of the preceding paragraph, this imposes
certuin restrictions on the shape of the crystal or its external condi-
tions. If there are s atoms in a unit cell, then defining the polar-
fzability of the atom g as [34]
12
“r R - (4.42)

we will obtain a system of 3s equations fer the caiculation of 3s values

of F{*:
‘ [ ‘—Pn P“'?
7 2t ; i)

Here aik and 8,u.y are Xronecker symbcls,

We will note that in writing (4.43) it was assumed for simpliclty
that the polarizability f““_is a scalar quantity, but it is not difficult

e
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to generalize (4.43) for o more complex case also. With a sufficiently
large number s, solution of the system (4.43) may prove to be a complex
problem. However, as shoun in [34}, in a number of cases this problem
can be simplitied if the symmetry of the structure is taken into account.

In conclusion we will list some of the works devoted to calcula-
= tions of internal fields in ferroeiectrics. Effective fields in crystals
. of perovskite structure are calculated in the works {35, J6]. The work
3 {37} is devoted to the calculation of internal fields in PbTiG3. 1Inter-
E nal fields acting in ferroelectric and antiferrcelectric crystals of
perovskite type are comparad in the works [38, 39]. The work [40] gives
a comparison of theory of polarization of ionic srystals based on a
representation of internal field, with the respective theories based on
dyriamic models. A more detailed bibliography and references to previous
investigations in this direction may be found in the works listed above.

Par, Model Theories for Transitions of Order-Disorder Type

Representations and methods ser forth in paragraphs 1 and 2 in
these or other modifications were used to explain atomic nuture of phase
transitions observ:d in some crystals of the perovskite group and ather
crystals, in particular in hydrogen-ceontaining ferroelectrics. In the
last case the complexity of crystal structure and interaction forces led
to the necessity of a number of rafinements of the initial model, for
example, taking into account the piezoelectric effect in Seignette's sale
and tunneling of active ioas in KH2PO4.

A model of local minima, i.2. representation of potential relief,
along which an ion moves, in the form of deep *'rectangular' wells was
proposed at the earliest ;stage of development of microscopic theory of
ferroelectricitye.

In spite of the fart thar after a sufficiently long discussion a
quite definite opinion formed concerning its inapplicability to barium
titanate, this model has a wide field of application for esplaining tran-
sitions of the crder-disorder type and, possibly, scme of the cases of
phase transitions of the first kind in ferroelectrics wish a structure of
perovskite type.

1. lodel of Local Min:ma

Suppose potential emeryy U from (4.8) has n dz2ep minims removed
ts a distance of 2s from each other. We will limit curzelves to an exami-
ration of these erystals where these minima are located im pairs on these
or other symmetry axes. The position of a minimum is characterized by tke
subscripts 3 and k where j is the number of displacement axis and
¥ -- the number of minimum on this axis {j=,.s., n/2, and k=1, 2). 1In
the absence of an externcl field and with a uniform statistical distzibu-
tion of active ions in a cell gjk=0i9p|a“d' consequently, the numbers of

itk

ions Nskgyj'k' with ary values of the subscripts. For couvenience we will
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use a Ujk=0j'k'=0. Assuming that only ions of one kind can be displaced

and making use of (4.9) and (4.10) we will obtain the following expression
for free energy:

+'F —s'Fp }

an
A Ay (T)— NkT In {Eup{ “.’}+exp iT (4,&33)

If ail axes J are orthogonal (the case of nonorthogonal axes was
examined in [41]), then after the differentiation of SaF—A the equation
of state (4.12) will be written in the following form: 3

3fF,,

T
P’I.—N“'—-—Tl s —9. (4.‘04)
2wt

In the absence of an external field it is convenient to write the
equation of state (4.44) in the following form:

she % )
‘,-ﬂf{'—-o' (4.45)
Ea)

N, -N.2
where "\f(‘i“"ﬁ—j‘) B0 and for the case when there is only one axis j,

has the sense of the order factor -

2
N(zs)
j kT

where f% is cthe coefficient of internal field from (4.3). 1he equation

(4,45) corresponds to the equation {4.12) normalized for the maximum dipole

polarization (Psg)max=ﬂsz'. Formulas from the theory suggested by Mason

and Mattias for BaTiO, ave also reduced to this equation if certain inac-
curacies permitted in [i} are eliminated. It is assumed in [1] that minima
are situated on the principal axes of cubic cell between the Ti™ and 02-
ions (j=1, 2, 3) and that owing to a small radius and large space inside
the oxygen octahedron the i ions can be displaced (Figure 4.3).

With account taken of stability coanditions (4.15), for the case
shown in Figurzs 4.3 the systeg of equations {4.45) has nonzero solutions
N(zs)
. go AT
when aj}fi, i.ee e-— T

We will compare the results following from the application of the
model of local minima to BaTiCy, with the main experimental data.

We will examine different possible solutions of the system (4.45).
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1. The region of cubic symmetry:

By e, (4.“6)
1I. The region of tetragonal symmetry:

’h.,“ (4047)

MTTF b Ay =0

e eyl }

III. The region of orthorhombic symmetry:

(4.48)

shary
- =

Time T vb U Tyl }
4T Y 2Zehay T

IV. The region of rhombohedral symmetry:
Tyma ey 9 O } (4.49)

x 1
-7 {gag w0,

On the basis of (4.46)-(4.49) and (4.15) it may be stated that
tetragonal phase proves to be stable in a temperature range of from 0°
to ©. The orthorhombic and rhombohedral phases prove to be unstable
in the temperature range with which we are concerned from the stand-
point of the experiment. 1In addition to this, the following has to be
noted. If the regioms of fulfiliment of conditions for the stability of
solutions for the orthorhumbic and rhombchedral phases would correspond
to experimental cdata, there would nevertheless exist a considerable
contradiction between the theory under consideration and the experiment.

According to calculations, below transition point and in direct
proximity to it 4R112nuconst=% and ﬂn}v=const= %. However, measure~
ments show that spontaneous polarization along the axis decreases by WJ?
“imes after the emergence from the tetragonal into orthorhombi: phase
[42]. This experimental fact indicates that a turning of ionic displace-
ment axis by 45° takes place with the average magnitude of the displace-
ment of ions remaining constant, and not a redistribution of ions in po-
tential wells in two mutually perpendicular directions the way this fol-
lows from the examination of the model theory in question. In precisely

the same way the experimental value of 4\1V —i; indicates a turning of

ionic displacemznt axis alcng the volume diagonal of the cube without a
change in the magnitude of displacement, and not a redistribution of the
displacements of ions in three mutually perpendicular directions.

Thus, as a result of examination of low-temperature phase transi-
tions a conclusion has to be drawn concerning the inconsistency of the
application of a model of local minima in the entire teémperature range
to explain the properties of barium titanate.

i
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Figure 4.3. Unit cell of BaTiO3.

l == Ba; 2 -~ Ti; 3 =- 03 4 ==
local minima

We will determine now with the aid of (4.4, 4.43, 4.43) an expres~-
sion for free energy A (WT) for a tetragonal vegion in the form of an
expansion with respect to Ps:

— P
A, r)-4.<n+—’-r‘ﬂz+3':—f!;"(§s(:'_n; P (4. 50

Cormparing with (3.12), we sees that

LI : FNnbe

L] ¥ 350, 7-’:_“”(&’.): v

and, consequently, a model with local minima situated in pairs on three
mutually perpendicular axes leads to a phase transition of A-type (crit-
ical Curie point).

Making use of (4,50), we will obtain the following relationships
chargcteristic of critical Curie point:

#=Y Fo— (R 0 rin (4.5
da'd 1059} (k118 \ e S0
O o (52

= 2
ST (4.53)

Upon a substitution of numerical values, Curie censtant in (4.53)
proves to be louer than the experimental value by more than one order.
It is necessary to underscore that attempts at this or other improvement
of agreement of theoretical results witl experimental resvlts encounter
the following difficulty in the cese of the mcdel of local minima.

According to the definition the magnitude of entropy jump in a
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transition will amount to:

B8 Ny (In Wy —In Wegy)s (4.54)

where W 1is thermodynamic probability

A4S == Nk (In6—-ln i) = . TO kN,

vhereas the experimental value of AS$22(0.02 to 0.1) k¥ (see chapter 12,
paragraph 1). Such a wide divergence makes the attempts at '"adjusting"

the mocdel of local minima for describing BaTiO3 by means of correction and
refinement of its separate components impractical.

We will note one important feature of this model. If it is assumed
that there is only one axis j, i.e. active ions may be only in two wells,
then the self-adjoint equation (4.45) has the followir: form:

f—thame=0, ("‘055)

whence W#=0 when a1:>1 and, consequently, free energy will be expressed
in terms of P§ as

- )t
ae, n-t.(r)+-’-3-p:+5";’%)§’—p:+....

i.e ,
* 7—4 BN ()
& - P- .’: (:;;: (CI. 3. 12).

In other words, in this case the order-disorder transition contains
characteristic signs of a phase transition of the second kind. However,
the change in entropy is also big in this case:

88 we Nk 1D 2 we 4- 0. 69Kk,

The large value of As is accounted for by the fact that coor-
dinate space of active ions has a discrete character determined by the
model selected. I1If it is assumed that active ions occupy both above and
considerably below the transition point a large portion of the '"phaseal
space'" of the cell, i.e. the potential relief is less sharp, then the
change i-. entropy should materially decrease.

The fact that the depth of the minima cann» be toc great is indi-
cated by the contradiction which arises upon 3 comparison of Curie constants
and of the quantity chiracterizing the change in spontanecus polarization
at low temperatures in the case of applying theory tc BaTiO;. It is natu-
ral that assumption concerning sloping wells raquires a passing-on from

(4.9) to continuous integration when calculating free energy, i.e. to fore
mula (4.10).
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2. Potential Relief for Ions in BaTiOj Crystals

Selection of the shape of poteatial relief for Ti jons in [1} was
based to a considerable degree on the assumption that the bonds between
BaTi05 ions have to a high degree a covalent character. In addition to
this, naturally, the overlapping of electron shells must not be too big
so that ion charges would not be wvery small since otherwise it does nct
appear possible to explain the large value of spontaneous polarization
in BaTiO3. Therefore, it is obvious that the bonds in this crystal must
have nevertheless a sufficientlv well marked ionic character.

Because of the foregoing, a question arises: what may the shape of
potential relief be like for different ions and, in particular, is the

assumption concerning covalent character of the bonds absolutely necesszry
for using local minima in the model?

Works by Hagedorn [43], Devonshire [4], Syrkin [44] and by other
authors were devoted to the calculaticn of potential energy of ions of a
unit <ell. In carrying cut the calculations the authors of [4, 4u! pro~
ceeded from Born treatment of the forces acting betweea ions in tle crys-

tals, i.e. they wrote the expression for potential energy of the ions in
the fcllowing form:

<
Ulr, v, 3) “2. Upnlz, v, 3)m= Z ‘:::t + 2 (ra) Y=y (rea)=t.
@ T3

(4.56)

All ions in this formula are assumed to be unpolarizable ai.J the
subscripts i1 ard k indicate respectively the number of the ion in the
subiattice and the number of the sublattice. According to [44]; in
taking polarizability intoaccount,; additional energy Up of an ior having
the polarizability o with a _swall displacement is introduced iuto the

formula (%.56), i.e. Up= ~éﬁb£g(x, ys z) where Eo(x, ys 2z} is tha field
acting on the displaced ion,

In [4] it is assumed that the ion is in a spherically symmetric
field. Iu [64] the formulas are determined more precisely with anisot-
ropy taken into account.

As a result of calculations it was found that the only stable posi-

tion for Ba2+and Tia+ fons (in the absence of cffective field breught
about by spontaneous polarization) is the center of a cubic cell. 1In

other words, for the Tib+ and Baz+ icns there 2 no potential minima
displaced relative to the center of the cell. 1n doing so, anharmoni-
S .
calness for the Ba2+ ions is less marked than for the Ti ions, i.e.
2
the position of the Ba"+ ifons is the most stable. It was also found

that the deviation of the field acting on the 02' ions being displsced,
from the spherical symmetry is marked considesrably more strongly. The
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pctential energy of 02- has two minima of Uy~0.5 electron-volts situated
on a line connecting it with two Tia+ fons at a distance of 0.33 £ from

the normal undisplaced position of the 02' ion. We will note that accord-
ing to experimental data the dicplacement of ions amounts to 8 4+f“0a06 H
i

T
- °. '\ ~
302 0.12 8 & 2+ ~0.00 &.

The razsults obtained in [44] indicate that the minima of Uk(x, ¥s 2)

displaced from the center of the cell may appear also in purely ionic
E: crystals. Of course, it should be remembered that taking the short-range
covalent forces into account mey materially affect the resvlts of
these calculations and, in particular, it may be found that the potential

energy of Tia+ ions also has minima., It should be noted that Hagedornm's
calculations carried out on the basis of using Madelung method lead tc sim-

- ilar conclusions regarding cthe potential energy of 02-. However, the use

3 of results contained in [43] leads to a big divergence of the magnitudes

of the calculatad and experimental polarizaticns at low temperatures. The
author of [43] attempts to decrease the value of theoretical polarization
by introducing decreased effecti.e charges and polarizability into calcula-
tions, In other words, it i5 assumed that the crystal is not a purely
tonic crystal. In this case it is possible to achieve agreement with
experimental data. However, in doing so, the values of the charjes prove
to be very small and the contribution made by the displacement of ions

in-o total polarization amounts tc about 6 percent.

Abandonment of a static modz! and taking the oscillations of {ons
into account would have made it possible to introduce more accuracy into
the calculations of potential energy.

Coming back to the question of applicability of the model of lacgl
minima to barium titanate we will note that although the use of active O
ions within the framework cf the Mason and Mattias theory wouid have ied
to a certain improvement of it, it would leave valid 2 large portion of
divergerces between the results of theory and experiment. A model of
antihamonic oscillators leading to transitions of displacement type (see
paragraph 4) proves to be more proper for BaTil3. icwever, the us2 of a
model of intermediate type with oxygens as the active ions moving between
two sloping and shallow potential wells is not precluded for the other
ferroelectrics having a structure of perovskite type.

Hi TN A L L

A wodel {n which active jons have two stable equilibrium positiors
along some of selective directions of displacement is used to exnplain the
properties ¢f some hydrogen-containing ferroelectrics (see below). iow-
ever, in this case also physical reptesentgtions and methods ef theoret-
ical investigation greatly differ from [1]. We mesn, in particular,
taking account of correlation, taking acceunt of tumnneling through the
potential barrier between the minima, failure to use a self-consistent
field, etc.
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3. Phase Transitions of Order-Disorder Type
in Hydrogen-Zontaining Ferreoslectrics

Ix a whele series of hydrogen-containing ferroelectrics a typical
example of which may be provided by KH,PO4, ferroelectric transition is
connected with the ordering of protons. In this case, proton has two
possible equilibrium positions on the hydrogen bond with its prasence
in esch cne of these equilibrium positions bringing about the appearance
of dipole moment. 1If the protons arc ordered, then thz dipole moments
corresponding to them are combined and the crystals have spontaveous
polarization. Upon a change in temperature, protons on *he bonds become
disordered and spontaneous peolarization disappears.

Th> circumstance that a ferroelectric transition in KH2PO, is
accanpanied by a disordering of protons with a rise of temperature is
cenfirmed by neutron-diffraction [45] and x~ray data [46], by a high
isotopic effect for Curie temperature upon replacement of hydrogen with
deuterium, arnd by the meastrements of relaxation time of deuterons [47].

Theory of phase transition in KH2PQ4 is iliuminated in two detailed
surveys [11, 47). " Therefore, we will dwell here only on the basic prem-
ises and results of the theory.

The £:rst theory which described comparztively successfully the
phase transition in KH2PO; was Slater theory [3]. Slater assumed that
each proten has two syrmetrical positions on the hydrogen bond and that
there is onlv one proton for each hydrogen bonu, and that only two hydro-
gen atoms may be near zach PO4 group. Only the suort-rvange interactions
between protons were taken into account In Slater's calculations which
were later improved by Takagi [49}. Slater theory predicts phase transi-
tion at 2 temperature

[

Wi =37 (4,57

whers 1 15 the difference of dipole energies oriented along and rerpen-
dicularly to the tetragonal axis. Modified by Yomoss and Negamiga {50]
Slater theory, which takes piezoeiectric effect into account, predicts
anomaly of elastic properties zgreeing qualitacively with the experiment,
and the magnitude of spontaneous deformation of the crystal which coin-
cides 2xactly with the experiment. However, Slater theory cannot explain
a high isoropic effect »=- a nearly twsfold rise of Curie temperature upon
replacement of hydrogen with deuterium. A&n attempt to examire long-range
forces in Slater's model was mads in the work [S1]. Theory in [51% sat-
{sfactorily dercribes most of the erparimental dsta with two exceptionms:
it also predicts too laxge an entropy of transition {see subparagraph 1 of
this paragraph) and does not give a clear explanation of isotepic effect,

The last circumstance is explained by the fact that it does not
take account of quantum phencamena (the tuuneling of protons) the imoor-
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tance of whick was pointed out by Blinc [52] and which may satisfactorily
explazin the isotopic effect. Blinc and Svetina [10] suggested a new ver-
sion of the theory based on the method of group decompositions. Both the
short-range and long-range forces, and quantur effects are taken into
account in their calculations., Blinc and Svetina theory expiains the
isotopic effect and predicts correct value of entropy of transition. 1in
the ciassical extreme it is reduced to the work model [51].

In 1362, de Geanes [53] introduced for the description of transi-
tion in KE-FO4 the so-called isospin method which was used in the works [54,
55, 56} for the study of collective excitations of protons (see in [11]
a cerailed review of results obtained in [SQ-SS]).

In the investigaticn of elementary excitations che Hamiltonian of
the svstem is written in the foliowing form:

Hel,+ 80,4 H,, (4.58)

Here H, is the Hamiltoniaa cf proton subsystem in the lattice
whose mution is fixed, Hy is the Hamiltonian of lattice vibrations with
the p-ctons at rest, the temm HpL describes the interaction of the proton
ang lattice subsystems.

Following de Gennes [53], introduction of "isospin' is usually
made use of in writing the Hp. In doing so, each proton is assigned a
fictitious spin equal to (%) if the preton is in one of the two equilib-
rium positions, and to {(-%) if it is in the other equilibrium position.
In tbis case tae Hamiltonian Hp (see [11]) has the following form:

X = N s
3z ov ol & R
_p,n_zrlg‘.% Shod 2_:21(07’,8,‘8,.-!- (4.59)
+ 1587850 + Us (S + U (59).

Here [ is proton tunneling frequency {fl], the second term de-
scribes the tunneling of one proton at the tunreling frequency of the
other, the following terms describe respectively the two~, three- and

four-part interactions, the subscripts f and g number the lattice points,
the subscripts ¢ and P number the protons at the poinc, the operators

X z - , . ices:
Sﬂ: and sf,d are described by Pauli aatrices:
1 1
s-..(‘,’ 7\. s--.( 7 °‘) (4.60)
?“l 0-7

toy=(} ) m 1o =(5)-

and act on the eigenfunctions:
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If the interaction of protons with the lattice, and the terms of
the third (U3) and of the fourth (Us) order in (4.59) are neglected, then
the Hamiltonian Hp will acquire a comperatively simple form:

¥ = ¥
._.g,_zr;: gls;,-g-l}: g(n'j,s;. 0 15585555, f4,61)

XA

In the approximation of molecular field (4.61 may be rewritten in
the following form:

—t;,—a,;;'s;n-e- a,;z.;s;,. (4.62)

where
Hom 20 20{Spp:
B, w20 {S}p;

o= .':;-O o ! -/ze i

([

<s¥> indicates themmal average S°.

An examination of the Hamiltonian (4.62) makes {t possible to find
tha frequencies of quantitative ""quasi-spin" proton modes and determine
(in the approximation of chaotic phases) their temperacure dependence.

The main result of such an examination amounts to that one of the frequen-
cies of proten modes in KHPO4 near Curie point changes with temperature
in accordance with the following law:

W (@) =T — & -+ a2, (4.63)

i.e. withT -9 W -0 when gq-w0. Thus, the behavior of this quasi-spin
made is similar to the behavior near Curie point of ferroelectric iattice
vibration (soft mode) in ferroelectrics of displacement type.

Taking into account the interaction of proton subsystem with lattice
vibrations, the imuportance of which was first pointed out by Blinc [57},
changes the results set forth above in the following manner [58]. oOnc of
proton modes is highly "interlaced" with the frequency of optical lattice
vibrations, and the frequency of ome of the two bound proton-lattice modes
vanishes at the transition point (see in more detail in subparagraph 3,
pavagraph 4, chapter 5).

Another new interesting result in theory of phase transition in
KHoPO4 is an exact solution recently found by a group of authors [12-16]
for a two-dimensicnal SlaTer model. Tn this case, phase transition proves
to be of the first kind with a reiease of latent heat. As in Slater theory,
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Curie temperature is equal to

(3== 1

k In 2 °

Thermal capacity proves tc be above and near @ c,~(T -9)%
unlike Slater model in which thermal capacity at T=0 remains {inite.
Dielectric constant is governed by Curie-Weiss law.

4, Ising Model

Different model theories connected with the use of a self-consistent
field;, as well as Landau phenomenological theory of phase transions, are
applicabie only in the case if fluctuaticns do not play a determinant role,
i.e. if the radius of their correlation is small in comparison with the

radius of interaction characteristic of the system in which phase transi-
tion takes place.

As shown in subparagraph 3, paragraph 1, chapter 3, this region is
small for ferroelectric transitions (it amounts to fractions of a degree),
Hcwever, the behavior of physical quantities in direct proximity Lo Curie
point is of a special interest.

In the region wheve fluctuaticns are substantial it was possible to
create microscopic theory of plase transitions only for a two-dimensional
Ising model. By lsing model {s ccant a lattice of diwnles each one of which
occuples only two positions and inceracts only with the nearest neighbors.
In a two-dimensional lattice each dipole interacts with four neighbors so
that the cnergies of the parallel and antiparallel dipoles are dissimilar
(we will indicate their difference by 1), Statistical sum for such a
lattice can be calculated exactly (see [56]), and free energy related to
one dipole proves to be equal to:

A(r)-—hr{%mz-@-s’—,-s Sln[;h’-;l,r'—shflf(cmu+tosu’)]~d--i-‘}. (4.64)
s

The function A (T) has a singularity at a temperature B, detcr-
mined from the following condition:

sh';l;-l- (46.6%)

Wwith '1‘<9 the lattice is in an ordered state, with T>@ it is
in a discrdered state, and with T=e a phase transition of the second kind
takes place. Free energy near the transition peint has the following
forms

4(1)-:—-;-3(r—c)=xa|r—n.
14.66)

where a and b are constants (with b >0) and thus, thermal capacity at
the transition point Yw:comes infinite In accordance with the following law:
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Comlln|T —8] (4.67)

I1f a phase transition in Ising model is approached frem ihe stand-
point of Landau theory, the role of_order paramecer will be played by the
average dipule moment at the point P (‘*spontaneous polarization™ of the
iattice). With the approach to the transition point P vanishes as

P (7 —0)'%, (4.68)

Finaliy, the correlatioa function f(ri, K’ r.,k,) of dipole moments
at the lattice points with the coordinates ry, and ry,,, bhas a singu-
larity at a T=8. For T# 6 the correlation function decreases exponen-
tially from rj - Tingre With a T=8 the correlation proves to be very
strong and f decreases slowly:

flrgpmrtyge ™

[compare with formula (3.30)].

Table 7

Behzvior of Physical Quantities Describing
Phase Transition With T~*0 for a Two-Dimen-
sional Ising Model [60]

T k) o7 o
- Saen- ' Anavenme &
@x3nrecran « ‘1‘_:‘- Tpree- | Tlomezexne KpATHSO
BCARNLNE [} CROS ARSI N CHEX BH-
none E acicos
2 _Cnontenstas noas- >0 a BA,=0 -
< FE - T A [ 0 [N i e8| firetfs
{ 0} w0l " sbn o {B
3_}163.‘10!(?[)!"!1.’3(8‘ [ >0 0 ~tT To=Tfy
NPOANUASKOCTS
() |
Lk VT3 <0 0 ,..,hrl’ v =,
L . Hoppeaxnxoumas
Dynxusa f(r, r') e .
w P, (r) Py (z7) — P} o] O frert it o=l
5. Hureponzuan G 0 ~t v 1
2 a;xgnu 13 { 20 0 l ~tt voezd
Key: {1) Physical Quantity (5) toherent length
(2) Spontaneous polarization (6) Eiestric field E
Ps (7) EFenavior of the quantity
(3) Dielectric constant (8) value of critical indices

{4) Corvelation function

Physical cuantities describing phase :ransitians in Ising uodel are
systematized in Table 7 where all "critical" indices (see pavagraph 1,
chapter 3) describing their behavior when T8 are given. With the aid
of Table 7 1t is possible to verify that (as already ncted in subparagraph
3+ paragraphk 1, chapter 3) similaritv relationships mikiny i. possible
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to express critical indices in temms of two fundamental quant ties are
satisfiea for a two-dinensioral Ising model.

it iz of inteinst to compare Table 7 with Table 6 (see chapter 3)
in which similir recults obtained with the aid of Landau theory are given.
This comparison indicates the considerable difference in the resulcs obe
tained on the basis of Ising model and phencmenological theory, and thus
underscores th. advantage of investigating the microscopic models.

Unfortunately, an analytical solution has not as yet been found for
a three-dimensional Icing model. However, there are numerical computerized
calculaticns [61] che main results of which are reduced to the following.
With the approach to the transition point (rom the side of high tempera~
tures, themal capacity diverges as ay(l - €3)0'2, and with the approach
from the side of low temperatures it diverges logarithmically as a9 In(§ -

- T). In this prccess, spontaneous polarization Py (D - T)’/lb and

dielectric constant behaves as (T)QSIQ. D

Results of numerical calculacions for a thrge-dimensional model are
of interest in connection with the results in the work [62} in which it is
shown that with a certain relationship of latrice constants the character-
istics cf thermodynamic quantities in phase transitions of the second kind
in crystals must have the same form with a change in symmetry as in a
three-dimensional Ising model. 1he available experimental data for ferro-
electrics qualitatively agree with this conclusion (see chapters 8 and 12)
in the sense that .hen thermal capacity exhibits a A-peak. the shape of
the curve on the side of ferroelactric phase is stzeper. A more detailed
comparison with the experiment has not as yet been made. The work [62]
~lso examines the effect of the oscillarions of atems and guantum effects

and it has been found chat taking the osciilations of the atoms into account

leals 2 a necessity of adding terms describing the interaction between
non-nearest neighbers ana also the multi-part interactions, and quantum
effects lead to the appearance of a transverse fisld,

It is showm in [62] that this field may be responsible for the iso-
topic displacement of transition point, <hich occurs, for example, in the
ferroelectrics KHZPOQ and KDpPO4. (A similar result was aisc obtained in
the works [10, 63 ). Apparenily these ecffects do not change the character
of charicemristics near the transitiorn point.

A qualitative argumeni in favor of the last statement are the re-
sults of an Investigation of a two-dineusinnal Ising model with the inter-
action of non-nearest neighbors taken into account, Such an investigation
carried out in the work [64  {n which interaction with dipoles following
after the neareit neighbors was raken into account, showed that the shaps
of the characteristic and the asymptote of the corvelation funcrion remain
the same as for the usual two-dimensiunal Ising lattice.

An impertant distinction =, such a case is anly that with a certain
relationship betwaan the constants the systen undergoes three successive
Ay

1) mumevical caiculations were carriad out for a face-contered
cubic laztice.




phase transitiouns with a drop of temperature: first from paraelectric state
to ferroelectric state, then from ferroelectric state again to paraelectric
state and, finally, to antifervoelectric state.

A situation when transition to ferroelectric state takes place with
a rise, and not a drop of temperature, occurs, for examplz, in Seignette's
salt. 1In the interaction with non-nearest neighbors, Ising model permits
such transitions only in a very narrow range of numerical values of the
interaction constants. This may correspond to the observed rarity of such
transitions.

In the light of the foregoing the importance of experimental inves-
tigations of characteristics of physical quantities in transition region
should be pointed out once more in order to attempt to understand whether
these characteristics correspond to results obtained for a three-dimen-
sional Ising model! both in the qualitative and quantitative respect.

Par. 4. Model Theories for Displacement-Type Transitious

1. Model of Anharmonic Oscillaters

An attempt to utilize representations for nonlinear oscillations of
titanium ions to ekplain the nature of ferroelectricity in BaTiCy was made
for the first time in a work by Ginzburg [19]. Later th2se representations
were analyzed in detail and devaloped by Devonshire [4] and Stater [5].
Some problame pertaining to the model of anharmonic oscillators were also
examined in [41, 65-67] and in other works.

The main distinction of this mecdel from the model of local minima
is assumption of a smooth change of the relationship Uy (% y, 2) and
abandorment of assumption concerning the existence of potential minima
"prepared in advance." Owing to the appeirance of & self-concistent field
when T<e the function U (xyz), symmetrical for cubic crystals, loses
the center of symaetry and a nonzero average displacement of lons takes
place. This situation can occur only in the case (see subparagraph 1, para-
graph 1) if the oscillations of active ions have a marked anharmonic cnar-
acter, i.e.

Upmnap (s¥ 92 - 33 4 b, {84 90 4 29) b 2y, (2373 4+ chit it

(4.69)

Instantaneous positions of the point dipoles appearing upon the
displacement of an active ion relative to the center of the cell zre con-
sidered to be independent of each other. The interact:an cf the dipoles
{s taken into account by the introduction of an averaged field determined
by the action ~f all of the rema .ing dipoles. For this purpase. a term
2'F 1is introduced into (4.89). Irn this term z' is effective charge of
the central fon, F is effective field actiag on .he ion, aad » 1is a
radius vector connecting the center of symmetty of the cell with the ion.
Thus, we have here anharmonic oscillations re¢lative to the center the
position of which depends on the magnitude of effuctive field,
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In the integration of {4,8) the anhammonlc portion (4.69) is con=-
sidered to be a small quantity. This makes it possible to expand the
exponent under ihe integral sign into a series with respect to
the anharmonic portion. 1In that case we hava:

; I3 AV A X3 TF? K X7y
4..--51;7_1:1!'7\,-,;;?.!:7?(—‘?) 1o 2 2T oy 4

%7 .
FET (3b; 4 ) S5 ‘!L‘fcl {264 £ Fp A
- 20, (F3F 4 FLES R FLAO))
(4.70)

Differentiating A w.th respect zo the field F we will obtain
a system of equaticns (4,12). However, inasmuch as free energy is ex-
pressed here not 1n terms ot esponents but in the form of a power series
it ic more convenient, by using (4.12), to represent it as a functiop of
total polarization. This makes it possible to make an immediate coupar
ison with thermodynamic theory, i.e.

3

A S N = 3(»- ".E.:.
PPy len{ rp(3) ez

NEFyE Q&
il )—'—i&,‘f-bd-r

- S e
(m,u +B) T =PI 0+ )w(‘,.ﬂ BPLL Py R FD

+ 26, 403p2 4. PAPL 4 PLEY) 4L,

: . fas 2
where § is determined from tie condition oz the ccefficie~t at P* be~
coming zero, f{.e.

Na2 “
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According to the calculazicas in {3
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Tormula (4.72) has a sufficiently definite physical sens amely,

a ferrvelectric transition (BD0) takes place if the constant

1383 AN
N e
G‘OJ

which characterizes Coulomb forces tending to displace the ion, is larger
than the constant which characterizes clastic force tending to return the
ion into initial position.In dynamic theorv tsee chapter 5, paragrazph 4)
this qualitative defiaition of condition for existence of phase transi-
tisn acquires an additional semse in terms of stability of lattice vibra-
tions. The role of anharmonic terms in a phase transition may be explained
in the Following manner: inizial equatien defining the relationskly P (F}
i1y easily transformed to tne form:

NI, W T (38 L AMGET L 3FTA T -
T it (4.73)
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whence it may be seen thot taking anharmonic terms into account leads to
the appearance in the expression for P of a term dependent on T, and
accordingly to a weak temperature dependence of atomic polarizabilirvy.
However, precisely this temperature dependence of the constant leads %o
a "ferroelectric catastrophe,"

It is easy to perceive from (4.71) that the model of anharmonic
oscillators makes it possible to *'design' phase transitions of different
types without coming into contradiction with the experiment, as this takes
place in the case of the model of local minima. It may also be seen that
the model of anharmonic oscillators describes a very "smocth" phase tran-
esition of the second kind with a small change in entropy.

In general, in this model the difficulty is of an opposite charac-
ter in comparison with the case of Mason model. According to Jaynes' [6] com~
ment, in this case the ferroelectric transition is brought about too "eas-
ily.# 1In other words, owing to the presence of slectron polarizability
in all ions, the effect resulting with a displacement of Ti ions proves to
be very strong and it becomes necessary to assume very small values of
polarizabilities in order to explain why Curie point is at relatively low
temperatures., In acccrdance with this, the "4/3 fr-catastrophe® takes
place here in a very mild form. In the case of displacement~type transi-
tion in questicn the entropy jump is relatively small, Physically this
is clear from the simple fact that unlike the model of local minima,
phase spaces differ little from each other before and after a transition
(see Figure 4.1).

1: should be noted that for the model of anharmonic oscillators
there are many ways for matching with the experiment, in particular,
introduction of reasonable values of effective cnarges and polarizabil-
ities makes it possible to reduce the effect from displacement of active
ions: when electrostrictive terms are taken into account the character of
a phkasa transition shifts in the direction of phase transitions of the
first kind, etc. In our opinion, a substantial improvement in the accu-
racy of the model of displacement-type trancitions would be that at least
two sublattices perform anbarmonic osciliations, Indeed, assumption of
the existence of only one active sublattice in the presence of an elastic
bend [17] with «11 of the remaining ions appears to be of small probabil-
ity. “Undﬂubtedly, tke case examined in paragrapk i when all ions perfom
osciilations thst are anhawmmonic to one or another degree is more prac-
ticable.

2. Anharmonicity and Fluctuatiosns of
Displacements of Azzive leas

The method of mathematical treatwment of tine medel of aznharmonic

oscillators is notking else but applicatien of <hermcdynamic parturbation
theory to the calculation of free energy of anharmonicaily oscillating

- 135 -




e

A e \,VVAFIWWWMWWWWWA L A A

fony [41]. The enerﬁy of an anharmonically oscillating oscillator with
its kinetic energy p</2m taken into account has the following forms

3
Em b ey M b (P ) £ 2y (Y i) — P, (4.74)
o7

where p 4s a pulse. 1In this case the role of che minor term V |is
played by the “anharmonic" portion of potential energy:

¥ oowdy (244 g 08) 4 2By (s34 sT? - yNaY).

According to thermodynamic perturbation theory [59], free energy
may be represented in the following manner:

(4.75)
Am A4 NT — o TR,
Here
A,u-—&?!ﬁ‘ﬁi":[ggup(—%)lt-..ly,],. (4.76)
(~8)var...a
ALl 7;:)”’ 3 (4a77)
SS‘JP("W)“""’*
¢ { _j‘-‘-\
axpi — Yide ... 4y,
sl L1 il (4.78)
)Soxp(—ﬂ)dx...ép,
Eg«%-}-q‘s!-i-yi-f-x’)—-x'l’r.
(4.79)

_In {4.75), Ay indicates "unperturbed" free energy calculated with a
¥=0; V is the average vaiue of the perturbing energy, in this _case the
average value of anharmonic portion of ion energy; v v - V)2 is the
average quadratic fluctuatidn of the quantity V.

In the determination of free energy in [5], enl: the first approxi-
mation was obtained which is given by thermodynamic perturbation theory.
The average quadwatic fluctuation of anhamsonic portion of potential energy

of the fon, having terms with bf and bg is not contained in the expression
for free energy (4.71) obtained in these works. The situation is different
in regard to polarization. As will be shown below, in this case fluctua~
tions already appear in the first approximation,

Taking (4.71) intc account, we find in the first approximation the
cosponent 3f polarizaticn vector along the axis:

24 44, af
p.——z;;--';}:':-h'?:- (6.80)

We will note that

[ | rwepitiinmie.doem | s0urgpddon.. o, | hames.. s
(Pasys:) 28} {Pary?e} tays)
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and, therefore, when using the expressions (4.77) and {4,78) the kinetic
portion of the energy Ep does not have to be taken into account at all.
Henceforth we will mean by Eg enly the potential energy of an lon per-
forming harmonic oscillations.

Substituting (%.76) and (4.77) into (4.80) we obtain the foliowing
after simple transformations (see [41])

Pyme Nyt — G (57 - 2P), (4.81)
where .
Lom ( 3up(~ )dx up (— g—’-:r;ﬁi)dx, (6.82)
<o , pev
IV S P4 up(-— -“———-’:; i )da/S exp( d-’—l'; F'f.\d:
- (4.83)

It should be born in mind that in (4.81) the aviraging is done in
relation to a harmonically oscillating joa. The first term of this ex-
pression represents the average electric mement of a unit of wvolume
brought about by a displacement of the center of oscillations of the
oscillators. The second term is explained by the perturbing action of
anharmonic oscillations. We will show tiat it represents a disordering
effect of the fluctuation of ion displacements:

TV — 1P by (85— 282) 1 4b g2 (89— £22).

Statistical independence of the coordinates xyz and the fact

that ;2 =§2 if Fx=i‘=0 and Fy=l-‘2=0 were taken into account in the calcu-
lation.

2 TR 5 4 reth
It easy to see that X - x x=2x{Qx)% and x - x x=L(AXx) +

+ a(x)3(A x2) since (Ax27Hl),

In addition to this, y2=(Ax)Z and (A x)4=3[(A x)~’}2. Finally,

w
Py N3t — ((1a,+°l».)1g.a:;~"+o, (=¥ iazjE). (4.86)
We find from (4.82) that
Lvw2'F 124,
K
‘ {zr—x)2 ‘!F( : : ,f>°: ("‘.85)
(—-‘;)_E""c =-’;r—‘
sl 2 -
oxp --—--—— d I
_ﬂ '
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Substituting the values of x and (&»)2 from (4.85) into (4.84),
we find (4.73).

The differeuce between Ax2 from (4.18) and (4.85) :is explained
by the fact thar in the former cace the averaging wvas done relative to the
total and in the latter -- relative to the unperturbed energy of the oscil-

lator. %he absence of singularity in the relationship AxZ(T)T-» @ appar-
ently indicates the "hardness" of the oscillator :ystem in a uniform self-
consistent field.

Thus, dependence cf polarizatioa from (4.73) and dielectric constant
on temperature and fielo strength, characteristic of ferroelectrics, is
connected with the fiuz:.uations of ion displicements. With a T-»@ these
fluctuations act as a disordering factor, i.e. they decrease polarization.

Thermodynamic perturbation theory is also applied in the determina-
tion of average values of displacements in dynamic theory but with the use
of a Hamiltonian erpressed in terms of normal mode of the acoustic and
optical branches (ses subparagraph 2, paragraph 3, chapter 5).

3. Statistical Theory of Ferre- and
Antiferroelectric transitions

In essence, theories for dispiacement-type rransitions examined
above have a semiphenomenclogical character. Assumption concerning a self-
consistent field in (4.8) which "breaks' the lactice symmetry predetcrmines
in advance the possibility, in principle, c¢f the existence of nonzero aver-
age ion displacements. In particular, this explaing the inability of this
theory to explain antiferroelectric tranmsitions from the standpoint cf
microscopic representations on interaction forces. Naturally, a desire
arises to obtain conditions for the existence of Pg on the basis of ~ ter-
nal dynamic and statistical characteristics of a system without resc ng
to an a priori introduction of the self-consistent field F.

in other words, ihe question concerns the construction of a dis-
placement-type model with the correlation of the states taken into account
similarly to the way this was done in Ising model. An attempt to con-
struct such a theory was made by V. I. Klyachkin [7, 8, 68] The distribu-
tion of ion displacements in a crystal is examined in the works mentioned
from the standpoint of Bogolyubov statistical method [69] Transition to
an ordared state is equivzlent to the appearance of a nonzero projecticn

of electric moment F, = 2<:€> where <:S>~ is the average displacement of
an ion. Next, a sequence of distribution functions F1(s), Fa(sis2)eee
-'-Fk(sl°~-5k) is set up in the configuration spuce of Pg. These func-
tions define the probability of the fact that the: ions 1, 2, 3... will be
displaced from their equilibrium positions by the vectors 5js S2essy Ske

To determine sj in accordance with general procedure, systems of integro-
differential equations are constructed, which connect a sequence of dis-~

tribution function: .
FysuLFyoy,
e (4.86)
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vhere D and L are differential and integral operators.

In the examination of odd-order statistical moments as the func-
tions of components of ionic displacements it was found that they vanish
only in the case i{f potential energy of a displaced icn, determined from
Bogolyubov equations becomes an even function relative to the correspond-
ing space coordinate.

Ir other rords, the appearance of nonzero odd momen*s, including
those of the first order, i.e. of the components of average djsplacements,
is connected with the disappearance of reflection symmetry of potential
enexgy of an ion re.ative to tiwc respective plane. Thus, a phase transi-
tion in a ferroelestric crystal is a transition from a state with a
smaller riumber of the planes of reflection symmetry of potential energy
of an ion to a state with a larger number of these planes. Ways for find-
ing the phare transition points appear in accordance with the foregoing.

Setting up a system of nronlinear integro-differential equations
for the ontisymmetric ~- with respect to the respective coordinate -- por-
tion of potentiai energy of the ion and application of an approximation of
the form (4.86) makes it possible to reduce the problem of determination
of the phase tranzition points to a determination of the branching points
of nonlinear integral equations with these points corresponding to those
temperatures below which a state with a zero antisymmetric portien of poten-
tial -nergy of » “lsplaced ion becomes unstable,

The resjective criteria have the following form:

for a ferr.clectric .
Pat—B, GDa 22 f=m0; s=wt, 20 3;

for an antiferroelectric

i‘n—ﬂ.(ﬁXEﬁF-O; l.kwy, ..., n

In these formulas isg and iﬁi are elastic moduli of respective

£

states, defined as structurial sums of the second derivatives of euffectivz
potential energy for the respective coordinate. 1In doing so, it was taken
intc account that in the ferroelectric case spontanecus displacements of
the separate superstructural sublattices are on the uversge equal and par-
allel, and in an antiferroelectric they are equal and antiparallel. It ig
important that <x3)k relates to a state lying above the temperature of

transition with the direction being the direction in which the sym-
metry of potential energy changes during the transition. These same condi-
tions may also be obtained as a result of requirements of thermodynamic
stabilitv of the system for the free-energy functional {compare formulas
(3.50) and (4.15)].
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The simplest case of one latiice undergoing 2 displacement was ex-
amined in [68]. It was found that by expanding the enmergy of pair inmter-
action with respect tc the powers of relative ien digplacements up to the
fcurth~order terms and applying thermodynamic perturbation theory relative
to the anharmonic portion of energy 1t is pogsible to obtain an expression

for X and the temperature of transition to tetragcnai phase (for
perovskite structures). In doing sv

)
]

v
”»

|

K,
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-

(4.87)
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Here §d and 3;} are structural sumsof the second and fovrth

. N
derivatives of effective pctential energy; ;‘; and },::; are the re-

spective sums estended only over a lattice undergoing displacement in a
ferro- and antiferioelectric casc.

Dynamic criteria of the appearance of ordered structures have the
following form:

G W > >

These inequalities are possible with the conditien of strong ¢ Ao
pensation of the positive and negative contributions in the quantity ,'Z,

of
Calculation of the average spontaneous displacements indicates that a phase

transition of the second kind f<"=t>§""8' T] takes place in this case.

.

Similarly, the values of dislectric susceptibility of each config-
uration determined in the usual way prove to be exactly ceoinciding with
Ginzburg’s [19] and Kittei's [70] thermodynamic expressions:

C 1 G
t:.-r_.‘; T, xf.u—z--e‘—_:-;;, T8,
for a ferroelectric, and

2l == ey oy (T = 0)"0 7 >5,,
L L Y (9‘ =Ty TS,
for an antiferrceiectric.

A

& study of thermal capacity jump indicates that the Jollowing
equality is satisfied in the approximation used:

A CS’:ACa s

i,e. it is impessible to identify the ferroelectric or antiferroelectric
configurations on the basis of puysly calerimetric measurements.

The question of relative stabitity ¢f the stutes wag also investi-




R T

gated by means of coemparing thermcdynamic potentials of the farroelectrics
and antiferroelectrics. 1In doing so, it was found that

¢s> @a when 83>65
@s <®a when 9s>ea

({b is thermodynamic potential), i.e. a state having a higher Curie temper-
ature is more advantageous.

A necessary condition for setting up appropriate structures is con-
siderable mutual compensation in the coefficient of elasticity of potential
energy of the displaced ion by energy brought about by the attractive and
repulsive .orces in an ionic crystal. This compersation must be consider-
able to such an extent that elastic ccefficient of only one sublattice
undergoing a displacement would turn out to be larger than the total alas-
tic coefficient linked with all sublattices of the crystal (compare with
subparagraph 1, paragraph &, chapter 4 and paragraph &, chapter 5).

The inference mentioned relares to the case of one ferroactive sub-
lattice and is similarly valid both for ferroele:tric aad antiferroelec-
tric crystals.

In prianciple, ferroelectric configurations prove to be pousit'~
even in the absence of strong Toulomb long-range forces. A necessa
condition in this case is the existence of strong exchange interac.
which must make negative cont-ibutions to the coefficient of elastic
of a displaced ion.

A numerical investigation of the force facte:s of energy of a pair
interacticn of ions carried out for perovskite structure indicates that
conditions for the appearance of ferroactive state cannot be realized for
a B-type lattice in the ABO3 compourd owing to a high symmetry of poten-
tial energy of the B ion. Conversely, for an Q ion conditivns of this
kind sar be satisfied with reasonable values of polarizabilicies, effec-
tive charge and of the constants of non-~electrestatic interaczions {com-
pare with {447 and paragraph 3, subparazraph 2).

In the approximation of one lattice undergoing displacement it
turns out thaz an increase in polarizability of a central B ion leads
to difficelt conditions for the appearance of farroactive structures.
It turas cot that in this same approximation the polarizability of an
A 1on has very liztle 2ffect on the appearance of ferrcelectricity.

Like the model thcories of Devonshire and Slatzr, statistical
theory nf phase tranmsition of the second kind based on the representation
of one sublattice undergoing a displacement leads to an insufficiently
rapid fall-off of spontaneocus polarization near Curie point and, as a
result of this, to an understartcd value ¢f the themwmal capacity jumpe
In this connection it may be believed that taking acccunt of ion dise
placemerts, which becomec necessary in the inves igatien ¢f several sub-

- 141 -

&
ARt T mmm;mmﬂ




lattices undergoing a dicsplacement, will lead to zn Increase of the rate
of growth of spontaneous polarization near the transition point, i.2. it
will shift transition of the second kind in che direction of ciitical
Curie point.

Par. 5. Electron Theory

.+ Jaynes-Wigner Theory

Microscopic thesries examined in the preceding paragraphs are
based on the assumption that spontaneous polavization is a result of
displacements of ions in a certain internal field determined by these
same displacements. In dcing so, electron polarization plays an auxil-
iary part (in spite of the fact that its magnitude may even be larger
thap ion polarization): electron component of the effective field Fq
grows in proportion te the displacement of ions and thereby increases
the forces that are conducive to the formation of spontaneous polariza-
tion until the disordering thermai factors and a sharper growth of the
restoring forces stops this process. In the case of transitions cf the
order-disorder type, electron member in the effective field increaseas
the preponderance of ifons coucentrated in one of discrete states.

From the formal point of view this mechanism is described by ti-
equaticns of a self-consistent field, which are given here in a maxi
simplified form: (E=D)

2 Fp B P+ P,

6) P10y
31?41 (1‘“0'8)

R A T TR AL

whence, taking (4.12) into account, we have:

BePes
t) Py—v,irT. e o bl

where _ is a nonlinear function. In principle we may imagine a reverse
case, i.el tranepose the cause and effect:

a) F',M,s,(r,v\"-l"").
6) Iyyrm 7 Py

P (4.89)
SURE e T A
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The equation (4.89) leads to a phase transition if there is a cer-
tain elec~ron statistical mechanism responsibie for the nunlinearity f
PolTs Pgeds We will note that this situation dozs not coatradlct i
principle the thermodynamic theory inasmuch as the order factor = muy
be expressed in terms of probability of different states ot the particles,
including =l¢ :rons (see footunote to chapter 3, paragraph i, subparagraph
ij.
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This e&ectron mechanism was suggested for the first time by Wigner
and Jaynes [6]. Its essence consists (as applied to BaTiO3) ir the fol-
lowing.

Barium titanate is not a purely ionic compoundi and the electron
structure is such that the octahedron should be regarded as something
whole, and not as a system consisting of independent parts. At the same
time, inasmuch as the octahedron consists of closely packed highly polar-
izable ions, a good shielding of internal Ti ions from external actions
exists so that in the first approximation each octahedron may be assigned
its own intermal clectron state not dependent on the stace of the neigh-
boring unit cells. Owing to the presence of central symmetry of the cell
in the absence of electric field each state must have a definite parit;,
and in this case the dipole moment does not appear.

However, if two states of opposite parity have close energies, then
the interaction between octahedrons will lead to the result that the crys-
tal as a whole will have a minimum of energy and the internal state of
each octahedron will be represented in the form of a linear combinarion
of symmetric states. This linear combination of states will have a non-
vanishing dipole moment, i.ec. spontanecus polarization and an internal
field appear.

Thus, the oxygen octahedron is polarized under the effect of the
internal field with the magnitude of polarization brought about by the
"mixing' of electron states being equal to Pa(Fe: T).

Total macroscopic poiatization P consists of the sum of P, + P
and the temm P;, which represent polarization of ionic residues (includ-
ing the jolarizability ¢ Ba ions and, possibly, of the Ti and O ions).
Next, an assumgtion is made concerning statistical independence of the
neighboring cells., The average dipole monent is one and the same in all
cells and this average pol-rization is used for the calculation of loczi
field acting on the cells. Actually the state of a given cell is affected
by the neighboring cells more strongly than this is believed and a con-
siderably stronger correlation between the dipole moments of the cells
should be expected, This correlation may be taken into account by using
the method employed in Ising medel for trausitions (order-disorder), How-
ever, the method of self-consiszent field §s applied ia the work {6].

. . fe se s e
Ia the absence of internal fileld Fye™ 777 2y the electron state of
i =
e¥ |

the octahedron is invariant relative to thz symmetry group Up. The po-
larization of rhe ocvtahedron is brought about by the existence of excited
states connected with the f{undamental state throvgh the interactions de-
termined with the change of the dipcle moment. In the work [6] it ig
assumed tkat the electronic excited stats of the octzhedran has the sym-
metry F, (see chapter 6), i.e. ic is thrice degenerated; it was verified
that the matrix element of the dipole moment between the fundamental and
excited state in this case is not identically equal to zere because of
considerations of symmetry. Then, indicating the difference between the
energies of the fundamental state and excited states with 2@ and se-
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lecting the energy zero in the middle between them, we wi'l obtain the
following for an unperturbed Hamiltonian:

Hyom

oo om
cCoOoMmo
oM oo
Moo o

If the field Fge is applied in the direction of X-axis, the per-
turbed Hamiltonian is represented in the following form:

oo <M
o om <
om oo
Mmoo

where V= -ere ‘S’#’Ox 4’1dw ,.«.F; v is the volume of unit cell; )n.is a

dipole moment appearing due to the overlapping {'mixing") of the funda-
mental and sxcited states. The Hamiltonian H is diagonalized by means
of the transformation matrix

cosd —sin8 O
2 tin® cost O
=t o o ¢
\ 0 e- 0

]

where ;:Ef.

- oo O

Qg’ e

.

The tranuvformation of H with the aid of the matrix S gives

—be

]
SHS twe

CR-P-
om e o
Mmoo o

b
G
1]
1]

R n?F2\Y,
where 3“5“23..({.{._;‘__6_;_ "

Therefore, the perturbed cell has the sum of the states:

L. S
-FX’—_*.‘ T Ze "_Ziché:-{»-c"l.

where =17 and, consequantly, the free energy of the cell will as

ysuaily be:

= -NkT ln Zy
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whence polarization

B VRETY shbr
P e . mt—r—  ——— e hY
- R e (4.90}

(4.90) is the unknown nonlinear self-consistent equation (4.89d)
for Pge, which under certain conditione has nonzero solutions. Curie
point is determined from the condition that b=!. The model examined
makes possible a qualitative description oi the basic relationships of
farroelectrics above (for example, Curie-Veiss law) and beiow (the
growth of spontaneous polarizatfon Pgg) Curie point. Tn spite of this,
at the present time electron theory in this version can haidly be con-
sidered ac something more than an interesting atrempt to prove the
possibility, in principle, of the existence of an electron mechanisi:
of the appearance of spontaneous polarization. The necessity of using
such a meckanism, at least for explaining the properties of BaTliOj3,
encounters certain objections.

Originally, electron theory was based or a series of x-ray dif-
fraction studies as a result of which no displacements of BaTiO3 icns
were detec-ed at all. At the present time, the existence of displace-
ments of all BaTiO3 icns leaves no doubts. Jaynes comsiders that this
fact in itself does not refute electron theory inasmuch as these dis-
placements are from the standpoint of electron theory a result of the
action of a field initially brought about by electronic processes.

However, while acknowledging thc existence of ion displacements

one must not fail to examine these ions in their statistical intaraction.
This should introduce substantial corrections into the condirions o: the

appearance of spontaneous polarization znd into the temparatures char-
acteristics obtained on the basis of electrun rheosry. The question of
which takss place first -- defcnaation of eiactron shells or displace-
ment of ions belongs rather to the field of kinetics of appearance of
spontaneous polarization.

According to [71] and [721], ferroelectricity appears in those
crystals which contain positive ions with ciosed eleccron chells of
ncble-gas atoms, surrounded by osygen octahedrens. Jaynes congiders
this as one of the proofs in favor of clectron theory. However, this
also indicates that possibly a formatien of covalent vords takes place,
which is conducive to a mutu-l drawing together of positive ions anrd
oxygen ions, formirg an octahedron.

Jaynes points out the large value of diffractive index in ferro-
electrics _ndicating the large magnitude of electron polarizabitities,
which is brought about by thc exchange of electrons betieen oxygen and
titanium ions. Ia addition to this, in his opinion the existence of -
maximum in refractive index near Curie point also indicates a change in
the electron structire of the crystal. However, these facts are not a
proof of incons:stency of ionic theories. There is no doubt that a
certain rearrangemeni of eiectron shells n2ar Curie point (evea from
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the standpoint of ionic theories) must take place., However, it should

be ncted that the maximum of eptical refractive index is very insignif~
icant and amounts to ~~3 percent of its normesl value. And the existence
of a frequency relaxation effect with which ¢ decrcases approximately by
hundreds of times, indicates Ly itself the enormous role which the dis~
placements of ionsg play.

Finally, one of the main inferences in [6] -~ prediction of absorp-
tion line in the region of 10 mc which corrcsponds to an initial energy
level of ~s4 kB, is not confirmed hy the present-day data on infrared
spectra of barium riranate (see chapter 15).

Modernized versions of electron theory of ferrcelectricity are
set forth in the works [73, 74].

With a combining of atoms into a crystal lattice, electron density
considerably changes. A hybrodigzation of atomic orbitals, for example,
sp~ or pd-Lybridization may take place in this process. Hybridization of
states with the quantum numbers of orbital mowent dlffering by unity leads
to the appearance of dipcle moment of the atom. In the work [733 appear-~
ance ¢ spontaneous polarization is linked with the hybridizatien ot
electr-.a orbits. 1In doing so, a system of N 1identical atoms is examined
in [73] with therc Seing one valent electron for each atom., ‘ihe Hamil-
tonian of the system is written in the same form as in the work [75] but
terms describing the exchange interaction are omitted (these terms may
prove to be essential in describing the ferranagnetics). Ne«t, the di-
electric constant s calculated using the procedure of double-time Green
functions. The main results of the work { 73] amount to an explanation of
Curie-Weiss la- and of the law of “Jdyad" for dielectric constant, and
also to a prediction of existence of resonance absorption of electro«
magnetic fleld at the frequency of collective excitation of electron sub-
system {Frenkel exciton) 32~2 6. t a 9~AOO“K,3an absorption of elec-
tromagnetic field with a wavelengtk A~3.5 « 107° cm should correspond
to such a "ferroelectric exciton.”

An attempt is made in thz work [74] to take into account the cor-
relation efreacts between 2lectroas in tle -racant sheaths of the A and B
wons in ferroelectric crystals of ABO» type.

An {nTerence is drawn that, in principle, correlation effects may
igad to the appearance of sptntaneous polarization. Their role depends
on the gifference in the energies of the levels of electrons of A and B
atoms and more considerably, for example, for BaTiO3 than for BaZr0y or
for CaTi0j3.

2. Pseudo-Yang-Telier Effecc and
Fervoelactric Transitions

Dynanic approach based on the conception of ferxroelectric mode the
frequency of which (2, becomes zerc or reaches anomalousiy small values
at the transition point {see paragraph 4, chapter 5), has become a stand-
exd approach to the descriptiosa of Ferrcelectric transitions of dig-

placement, cype.
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‘n zdiabatic approximation (see subparagraph 1, paragraph 1, chap-
ter 53} ¢-lerlies theory of crystal lattices. The sense of this approxima~
tion adounts to chat the motion of alectron and nuclear subsystems of the
crystal is separated, with the electron tem dependent on the coordinates
of nuclei as cn parameters being a potential function describing their
oscillacions, Therefore, an inference hzs to be drawn that when w0
sutbstantial changes also take place in electron terms responsible for
such anomalous behaviors of Wy (see alsc [817];.

Gy b

m

o

o AR

An assumption, fllustrated on models, that psevdo-Yang-Teller of-
fect mzy be a cause of the appearance of spontanecuis poiirization fou
ferroelectrics of displacement type was expressed in a whele serizs of
thecretical works [76-801.

RS R R e

We will recall at first _ie sense of Yang-Teller theorem [81].
In moiecules or crvstals with a sufficiently high symmetry the funda-
mental electron state could prove to be degenerate (degencracy not con~
nected with spin is meart). 1In order that the respective configuration
of the system be stable, the energy of electron term as a function of
distances between atoms must have a minimum. It follows from this that
with small displacements of nuclei a change in the energy of the temm
muist not contain terms linear wich respect to displacements. Yang-Teller
theorem states that such linear terms ulways exlst for a degenerate
fundamental state.

il

g oo

E We will expand the Hamiltonian of the electzon subsystem 3@ with
a respect to the powers of nomal vibrations of the lattice: )

...x.+2,‘, ok z_h,(,‘._(,ko.o. 4,913

E If the fundamental state is degenccale, than linear terms in (4.91)
= are not equal to zero and the splitling of the electron tern may he found
‘% with the aid of theory of perturbatiocas for degenerate levels. We will

2 examine the simplest case of a twice degenerated level unstable vslarive

] to the normal vibration Y. We will dencte the nondiagonal matwix slement

of the linear term in (4.91) with N-%VY where N 1is the number of elec-
trons, and the diagonal matrix zlement -« with Ep. Secu:ar equatien of
perturbacion theory will have the following form:

w{, \’"- 92)

Ey—E Nhyy
3 N-hYY  Ey—-&

The degenerate term will split in this manner into two levels with

E the magnitude of the split being equal to 2R~§VY, as may be szen {rwm

{6.92).

3 We will now pass on to 2 case of two nondegenerate but ngar lewls.

3 It turons out that in this case thes linecar temms im (fa.QNl arz alseo nenaero
until the distance between the levels is le's than 2NIVY (notatliar for

nondiagonal matrix element has been retained here}.

b
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The interaction of two near levels through iattice vibratioms,
crnnected with linear temms in (4.91) has the name of pseudo-Yang-Teller
effece,

=

i

u,

Followirg the work [79], we will show, using the simplest model as
an example, how pseudo-Ying-Teiler effect may lead to the apnearance of
gspontaneous polarization. We will examine an ionic crystal with two near
zones, In doing so, we will neglect their dispersion {the distance be-
tween the zones &). We will assume that these zones are of different
parity. Tn this case, antisymmetric normal vibration Y, 1is respen-
= sible for rhe pseudo-Tang-Teller effect. & macroscopic_dipole moment
E appears when there are distortionc« counected with it.

=
B
=

In the presence of two near lavels, pertucbation theory glves:

Y e
PRS- (4.93)

With account tzken of (4.93) we will obtain the following for the
portion of crystal emergy E dependent on the normal coordinate Y:

G AT
PO (O 74 . ) J R T Ly B P (4.94)
M and w are here the reduced mass and the frequenty of aormal
wvibration.
n.—I‘N-';'i;T:‘\Q_' ) ‘ (4.95)
i L Hu’a:‘
et 5)

An analysis of these expressions shows that if

Mutd (a‘g?'
e <h
the equilibrium position of ions changes by the amount:
- v =LAV Aty
e Y.-wﬁ"{ "—iﬁ;"-—"-—mi. (Iég 98)

3 This means that two equivalent iower-svimetry configurations exist
in each one of wtich che crvstel hai a permznent dipoie moment. The value
of ¥ and accordingly of spoutanecas polarization is maximum wnen 1=0
and decreases Y.ih a:x inciease 4L T.

- - by -
&t CurTie texperature:s [ s Huty T
ko b iPIRT AT (4.99

1F 1t wos showm in the works 178, 82} that near zones of opposite
parity wst exlzt {u PaTifd, If the zones had the same yarity the dis-
tortions of the crystals wouid te connected ulth symmetric vibration and
1uo mazroscopic dipole moment would sppear with them. If the zones are
degenerate, the “cctive' normal vibratien must alse be degerarate and

a whole seriec of low-symmeiry configurations is possible.
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the distortion of the lattice disappears and the crystal undergoes a
phase transition of the second kind.

The effect under consideration leads to a high overnormatlization
of the frequency of the vibration ¥, dependent on temperature. The fre-
quencies of this vibration ¢, and (A Y prove to be respectively
equal to the following with tﬁe approach to Curie point from th: side of
high and low temperatures:

(:L:) #.25 o fe 1)+ 1,
(:.:"-) =1~[mg=7, =T (4.100)

With a T=8 wc+ =wc_=o {compare with paragraph 4, chapter 5).

The expangion (4.100) gives the following near @ with accuracy
to linear terms:

(%,'f‘)"’z- (4.101)

i.e. the law of dyad well known from phenomenclogical theory (see para-
graph 4, chapter 6).

It may already be seen from the foregoing thar “interzone' theory
of ferroelectricity is very promising. Very recently such an approach
was used to describe spontaneous polarization [83] and successive phase
transitions in BaTiO3 [84] and for the calculation of behavior of ferro-
electric modes in an electric field [85].

Microscopic model theories examined in this chapter concributed
to a considerable degree tc the formation of representations concerning
the nature of ferroelectric transitions. At the same time, there is no
doubt that in their further development microscopic theories must be con-
structed on the basis of more improved physical approximations.

In the investigations of ferroelectrics within the framework of
statistical method it is desirable to abandon the use of reprecentaticns
concerning self-consistent field; which convey to the theory a semi-
macroscopic character. In other words, the questicn concerns the further
development of an approach in wiaich correiation between the states of
active ions is taken into account. It is also obvious that it is necessary
to abandon the separatiou of lattice elements into ferroactive and in-
active elements, and examine the state of a crystal orn the assumption
that all of its elements perform anharmonic oscillations to one or
another degree.

Development of Ising medel and of interzone theory of spontaneous
polarization also appears important.

The use of purely statistical methods preciudes the possibiiity
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of obtaining information on the spectlel features of vibration sgpectrum of
ferrvelectrics. This gap is filled by dynamic theory which examines lat-
tice vibrations. However, an explanation of temperature dependences of
the parameters of the crystals and in general of the mechanism of ferro-
electric transitions is possible 2t the present on the basis of representa-
ticns concerning anharmcnicity of oscillations and; consequently, with the
condition of exzmination of interaction of different modes using the means
of perturbation theory. This makes clear the reasons for tiie consolidation

£ dynamfic and statistical methods of investigation, taking place at the
present time.
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CHAPTER 5. DYNAMIC THEORY OF FERROELECTRICITY

Owing to thermal agitation the atoms in a crystal perform small
oscillations near equilibrium positions. The smallness ot oscillatory
displacemants in comparison with lattice constants makes it possidle to
regard them (in the first approximzsion) as an aggregate of so~-called
normal oscillatisns, i.e. independent plane waves to each one of which
corresponds its owr. frequency and waveliength.

Normal oscillations representing displacements of atmmi: sublat-
tices of a crystal as a whole relative to eac. other are called limit
oscillations. Some of the limit oscillations may be connected with a
change of the macroscopic dipole moment of a crystal. Such occillations
are usually calied dipole ascillsations.

The equations of motion for 2 normal coordinate ¢ cf a limit
dipole oscillation in an electric fieid Eel®t may be writtea in the
following form without taking damping into account:

1)

Ll
0'!"'5@&-;—[.‘:“‘. °

The egquation {5.i) represents equation of motion of a harmornic
oscillator. Here @ is the frequency of rormal oscillation, z* --
effective dynamic charge of the mode in question (equal for the simplest
model to jfonic charge), and m -~ reducea mass for a given normal oscil-
lation,

Polarization P connected with the normal coordinate Q is equal

Parae. (5.2)

We will zubstituty (5.2) into (5.1) and will seek soiution in the
feilowing form:
P-P‘CH.
(5.3)
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Then we haves

*N
~wtP, + ulP, o= K. (5.4)

It follows from (5.4) that

aP‘ -,
.'-,.Qg-'ér—l:—————-s-“:—’ . (5. S)
‘ *
vhere gg is contribution tc the dielec:tgric constant of the crystal ¢
owing to the normal oscillation Q, a= _z_!_;N_.

If the crystal has several limit dipole oscillations, the expression
for £ acquires the following form:

z-..,,'.z_,_':__, (5.6)

wy—of

Here ¢_ 13 tie high-frequency dielectric censtant, i.e. at the
frequencies wés)k, (ﬁk indicates frequencias ~f the limit dipole oscil-

lations, #nd a =-- the forces of the oscillators.
In the expression {5.6) tne damping of normal oscillariens may be

taken into account phenomenclogically by assigning co each .node the
damping constant y..:

. e
.-3“-’.23:‘—__"’-;2‘“{:; (5.7)

It may be seen from (5.7) that if in a certain temperature range
the dielectric constant £ f{vith W<W,) sharply increases and damping
i5 small (i.e. yk4 wk), then one of the frequencies &; must sharply
decreass at these temperatures. It follows from this that in a ferro-
elactric transition (in any case in a trensition of displacement type)
the frequency of one of the limit dipnle osciilations of the lattice must
sharply decreasz with the approaca to Curie point.

&n oscillation whose frequency shacply decreases when T-ﬁe is
usually called *ferroelectric oscillation”" or "scft mode.” The concepc
of "soft mode' was put forth by V. L. Ginzburg in 1949 for ferzeelectric
transicions.

Proceeding from phenomenoiogical theory, Ginzburg showed "1-3]
that in the case of a phase transition nf the second kind {vr of rhe
first kind approaching c¢ritical peint) the frequency ¢f one of normal
oscillations ¢f the ¢rystal lattire w@. wust become zero, with the
phase trensition being ferroelectric if ) i3 the fregquency of the
limit dipole oscillation.
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Later, Anderson [4] obtained the same results on the basis of
microscopic theory. This probiem was investigated in a greater detail
by Cochran [5~7] who examined it using a microscopic model of a diatomic
ionic crystal as an example.

From the standpoint of Ginzburg--Anderson--Cochran theory, inves-
tigation of micromechanism of a ferroelectric transition of displacement
type meosus, first of all, finding the mode of ferroelectric oscillation
and following up the change in its frequency in phase transition. There~
fore, the special interest shown of late in the dynamic theory and vibra-
tion spectrs of ferroelectrics is understandable.

This chapter sets forth in brief form the fundamentals of dynamic
theory, gives results of calculations of vibration spectra of ferroelec-
tric crystsls, which may prove to be helpful in the interpretation of
respective experimental results, and makes an attempt to set forth the
basic ideas of a theoretical approach tc the problem of dynamics of crys~
tal lattices.

Par. 1. Elements of Dynamic Theory of Crystal Lattices

This paragraph sets forth basic information from dynamic theory
of crystal lattices, necessary for the understanding of dynamic approach
to the problem of ferroelectricity.

1. Oscillations of a Linear Chain

Many characteristic properties of lattice vibrations show themselves
in the simplest model of a linear chain of alternating atoms of two kirds
{Figure 5.1a).

e

& L] [ <] [ ]

YAV

Figure 5.1, Osciilations of a linear chain.

a -~ linear chain of alternating atoms of two
k' * {black and white circles); b ~- oscilla-
.- . & o linear chain ¢f the same items with

N T ¢ ‘Fg and q=§§- Arrowheads
indicat o2~ mic displacements.
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It is also convanient to tracce on this model che basic approximativas
used in lattic: vibration theory. One of then is the so-called adiabatic
approximation. In this case, the wave functloen of a crystal, dependent
on the coordinates of eiectrons and nucleiis reduced to a simple product
of multiplication of the wave function ¢f electronic subsystem with
fixed positions of the nuclei by the wave function of nuclear subsystem,
i.e. variables describing the motion of the electronic and nuclear sub-
systems are separated. The energy in electron tcrm depends on the co-
ordinates of nuclei as on paramete-s. The motion of nuclei is charac-
terized by the potential energy U equal to the energy in electron term,
Such a separation and introduction of potential function U for nuclel
proves to be possible owing to the circumstance that kinetic energy of
electrons is small in comparison with kinetic encrgy of nuclei, and the
motion of electrons is much faster. Owing to this, during tle oscilfa-
tions of nuclei, electrons immediately (adiabatically) change their
energy according to nuclear displacements.

We will use the tollowing system of notations, which can be
easily generalized later for a three-dimensioral case: we will indicate
by Xi, displacements of an atwa of the kind g (W1, 2,404, s) in the
{-th vait cell ({=0; +15 +25 £35...).

Making use of the smallness of the walues of xb in cemparison
with lattice constant, potential energy of the system U may be ex~
panded into a series with respect to the powers of displacements 1)

. 1 e
Dl 22 - -
Uy + 3 XY mx:_.x,x;.*.,,, {5.8)

The quantities
0",'-.*--—--3.‘0 T L (So 9)
B aXex! e

are called force constants.

)
It follows from translation symmetry that the wzlues of ¢,‘i‘
denend only on the difference L- '=h. Therefore, later it will some-

times be more convenient to use for them the notation qpiw.

The fcrece constant (;é:; is numerically egqual to the force act-

ing on the M~th atom in the L-th unit from the side of atom ¥ In
the unit cell L' i€ the latter atom is displaced by ome unit of

length. The absence of first-ovder terms in (5.8) corresponis to equi-
librium conditions of the chain. Neglecting of texms of higher than second
order constitutes the basis of the so-called harmonic appreximation.

1) Summing over repetitive indices is meant in (5.8).
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The equations of motion for atoms have the form:

mekpm - G on et (5.10)

We will! seek solutions in the following torm:

1oVt b !
X'-'mpx."e"“*n, (5.;1)

t.e, in the form of plane waves propagacing over the chain., Here "a" is
latrice constant, q -- a wave vector, and & -~ frequency of vibrations.

A substitution of (5.11) into (5.1C} gives:

where i
- o} (ireh,
vl (0} Trngrmy z a (5.12a)

The following relationship exists between the quantities [mv] (q):
p ALK WIS (5.12b)

which follows from the requremenr of an abserce of appearance of internal
fozes acting on the atoms in a parallel translation of the crystal as a
whole.

Thus, a set of an infinite number of equations for an infinite
chain hLas been raduced to a s2t of systems of s order {s 1is tke number
of atoms in unit cell) for eaczh value of q. The possible values of q
may be determined from boundary conditiens.

The so-called periodic boundary conditions are usually selected.
In chis case, an infinite crystal is divided into periodically arranged
velumes and condition of a corresponding periodicity of displacements is
‘mposed. Periodic bnundary conditions are convenient in a mathematical
scheme but, of course, they ave artificial. However, rigorocus proofs
exist [8, ©] that the lattice vibration spectra calculated with th: use
of periodic and some other more realistic boundary conditioas will hardly
differ from ¢ach other when periodic volume is sufficiently large.

For a linear chain, periciic boundary conditions are equivalent to
~a¢ relacionships:

N2y (5.13)

for all 4 znd {, where N 1is the number of atems on : periodic length.

In order that the expression (3.11) satisfy the requirement of
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periodicity (5,13) it is necessary that:

. N "W (5.14)
1=y m, masQ; $1; 42, ..., b e
In doing so,

< t 3
RS A (5.15)

since the number of Ns solutio s equal to the number of degrees of free-

dom of the "periodic length" of the chain is already contained in this
range. 1)

The smallest range of the values of « corresponding to all pos-
sible physically unequivalent vibrations 1is called Brillouin zone. We
will explaing by using an example, the circumstance that the range (5.15)
i{s a Brillouin zone for a linear chain. We will examine cscillations of
& linear monatomic chain with a q=g'a_t’ and a

ure 5. 1b) .

q= 2%5 respectively (Fig-

It may be seen from the figure and the expression (5.11) that the
same displacements of the atoms of the chain correspoud to these twe
waves. These waves assime a different form only at the places where
there are nc atoms, i.e. where they have no physical sense.

Thus, the problem on the spectrum of a linear chain has been
reduced to the solution of the sets of equations (5.12) of the

s order
for N values of the wave vector gq.

We will examine the simplest model of a linear chain with atoms of
two kinds (Figure 5.1) in which the nearest neighbtors are coupled hy
springs having an elastic constant k. Then we have the following for
the quantities [wv] (q) (w, ¥=1, 2)

_f_. & m-____?__
{12 (‘)’!2"(7)"'1‘@- Lo X VE;;: cosgE,
1 2
H1{e) == (81 (0) = 5= Sy =
2k

i
121 (g) = i) (0) = 7= 8%y

tere the quantities [11] (0) and [22] (G) were calculated with
the aid of the relationship (5.12b}.

Cendition of solvability of the set (5.12) (dispercion equation
defining the relationships (q):

{inv] () — vy, J =0, (5.16)

where 4;9 is Kronecker symhol, a2cquires the following form:

1) For convenlence in writing (5.14), N is assumed to he .  even
nunber.
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From {5.17) we find “he dispersion curves:

k ——e et
“:(k‘)";l;‘(m'i'ﬂa + \/;1}+m§+2m,m,cos¢4~

The ratios of the amplitudes of atomic displacements may be found from
the equations of motion (5.11):

2k 2®
A s wl— (5.19)
S T~ TE e

3 Y2 2 : —-M’cos 7

In Figure 5.2 is shown the form c¢f the spectrum @ (g) and tte
density functicin of the states g{w) (g(w)d@ 1is equal to the number
of states in 2 range of from W to W+ dw) for a different mass ratio
m

s The two branches w+ and W. corresponds to two roots of (5.18).

2
The vibrations ¥ (q) for which W-*»0 when g-#0, are called
acoustic vibrations. This name is courected with the fact that when
q ave small these vibrations correspond to sound: in this case the
particles in one unit cell move practically as one whole and a discrete
structure of the lattice is not very essential, i.e. it may be ‘-egardacd
simply as an elastic continuum. Conversely, for vibrations ¢n%(q) when
¢ 3.2 small, two sublattices of the crystal as a wholc vibrate in anti-
phase with vespect to g¢ach cther. In jonic crystals, precisely such vi-
bratious {with q-#0) may be coupled with a large dipole moment and
strongly interact with 2lectromagnetic field. Therefove, branches for:‘
whichk  w{q)5=0 when q-»0 are czlled optical vibrations. Witk a g=2
only atoms of one kind vibrate (light atoms for optical branch and heavy
for acoustical branch) und the atoms of the other kind are at rest. ¥ith
any g, in acoustical braach the displacements of the nearest neighbers
are of the same sign; and in tbe opcical branch -- of the opposite sign.

It s of interest to fallow up the change in vibration spectrum
with a change in the ratio of atomic masses. With my=my the linear
chain actuaily has a lattice constant smaller by one balf. The curve
w?!q) for a liuear chain with the same atoms, with the same force con-
wtant and a lattice constent smaller by one haif (Figure 3.1) {s shown
in Figure 5.2 with dashes, iIn this case the optical branch is absent.
Solutions of +{g) have been obtained for a iimear chain with for-
mally distinctive atoms and with myTHmg represent the same curve @{q)

m
but reduced to a Brillouin zcne which is smaller by one half. w%ith .1 =
my
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= B P N | I 7

Figure 5.2. Disperslon curves w #(g) and
density of states g{(w) for a linear chain
of astoms cf two kinds with different ratios
of atomic masses,

=4 the spectrum conziderably changes. A slit appears in it. The dls-
persion of optical branch (i.e. dependence en q) becomes weaker. Finally,
m
1
with Er = 9 the frequencies cf the optical branch are contined in a very
narrow range. These vibratioas are reduced chiefly to the motion of light
atoms whereas heavy particles remain practically motionless. Inasmuch as
in the approximazion of the nearest nelighbors the particles affect each
other only through the displacements of heavy particles, their vi, rations
m
in the cprical branch are te a largs degree indepenient when El =9 and
2
vibration frequencies do not difter very percaptibly from the frequency
of vibrations of the light particle between two fixed particles.

2. Generalization for a Three-~
Dimensional Case

"~ R T T
R et AmeA g BN, 54 AR

This generalization is reduced in p: .ice to the introduction of
the subscripts i, k=i, 2, 3 corresponding ro Cartasian coordinates. The

formulas (5/12) acauire the form:

o v
—ax g 3" ¢ im X o {5.20a)

[ w’r'“"== 3 efess, (5. 20b)




T————
P ) o o

P

e

o g
PPt e

m

R

U i

S

iy

s

ik

where hy=0; +1* 42; 435...,

bamlet
ol = -—‘?l-l—p-
aX2eX,

and A is a matrix of the base vectors of translations (equal for example,

for a simple cubic lattice to the unit three-dimensional matriz multiplied
by lattice constant). In a three-dimensional case the components t‘i} (q)

are called components of frequency tensor.

Physical urequivalent values of the wave vector will now be deter-
minted from the condition:

q--‘;z;-ﬂh (h,—o. 1 £2; ... ig-g:-a; Z:—), (5.21)

~
where B is a matriz of the base vectors of reciprocal lattice {see chap~
ter 6) .

For a three-~dimensional case, Brillouin zone will represent a unit
cell of reciprocal lattice.

Wirh a specified value of the wave vector q, dispersion equation
for the determination of the vibration frequencies of the crystal now has

a 3s order:
![.: :}N)v-‘,"u"g-a- (5‘ 22:‘

Out of the 3s branches of the vibration spectrum three branches
will be acoustical (-0 when gq-#0) and 3s-3 will be optical hranches.
*he vibraticens will now also be differentiated by the direcrion of dis-
placements with respect to the wave vecteor,

In some particular cases (for example, if g is oriented along the
sympe:ry axis) atomic displacements will be purely longitugdinel {i.e. ori-
ented along the wave vector) for certain branches, and purely transverse
(perpendicular to the wave vector} for the other branches.

3. Lattice Vibrations
in lonic Crystals

Tonic crystais should be specially examined for two reasons.
Firstly, in the determination of vibrations it is necessary te take
intn account ele.‘tic fields appearing on the surface of a crystal with
the displacement of sublattices; secondly, for lomg-range Coulomb forces
{t ls neccssary to take inte acccuat the affects of dslay, i.e. the cir-
cunstznce that electromagnetic fileld does propagate instanecusly.

foth of these factors are importanthnly in the case of_iong
waves, Indeed, owing to the muitiplier el h " the series ot r;;y (q)

3




{see 5.20b) conveﬁif. In addition to this, at distances of the order of
lar

vibration length a 2229t/q the constants should be taken inte account.

Cn the other hand, while the wavelength A of light corresponding to the

w lat? the

effects of delay may be neglected:. Since the frequencies of optical vi-
brations w,.,m“ sec™?, A~10"2 cm (A'la)

latrice wibration frequency u)QL: 2$tc) is much larger than ;L

Smin 168 cm, i.e. the effects
of delay are nonsiderable only in the portion smounting to 10°° of Brillouin
ZOne .,

Latt.ce vibrations with a q={ in which crystal sublattices ara dis~
piaced as one whole ara connected with the change in its macroscopic dipole
noment and appear in infrared absorption and reflection spectra. Therefore,
we should dwcll in greater detail m these vibrations. It is convenient to do
this with the aid of & simple phenomenological model for optical vibrations
of diatomic ionic crystalse.

We will first examine the problem without taking the effects of de-
lay into account. The set of equations describing the limit optical (q—?O)
vibrations 6f such crystals are written in the following form 1) [10, 11]:

W e 8,y W 4 b:E, (5.23a)
Prady W4 b5E, .
(5.23b)
m,my
Here ws\vﬁlx where M= v is reduced mass, X is the relative

displacement of sublattices of the positive and negative ions, P is lattice
poiarization and E is electric field.

We seek a soluvion of the set {5.23) in the form:

BBy
Wen Wy ol
Pos Py

Then we will obtain:
_Jm~hﬁﬂ4¢_}

5. 24
Pom bWy kb oty G )

Eliminating Wy from (5.26), we will obtain:

Pgn(bn-}_—_'&‘l—:ﬁi"—: . (5. 25)

After camparing (5.25) with the definition:
Ey b 4zPymme (=i Fs. (5.26)

we wi'l find dispersion formula for dielectric constant:

—

1) 1t can be shown {10, 11] that iy follows from the law ~f con-
conscrvition of encrgy that byy=byi.
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which it is convenient to write in the following form:

. 5.28)

R
In formula ¢5.28), wo—-v- bjy 1is infrared dispersion frequency.,

i.e. natural frequency of the lattice at which €(W)-poo; Eg=1 + 43¢byy ~

e b,

b1s
dielectric constant; €, =1 + 4$Chyy is optical (measured at WHwg) dielec-
tric constant,

is static {i.e. measured in a field with a frequercy W<€ 00)

In order to examine the frequencies of limit optical vibrationms
the following equation of electrostatics should be added to the set (£.23):

dlv (2 + 42PF) an 0. (5.29)

Substituting P from (5.23b), we will find:

4oy (5.30)
divE e — i div W
We will separate the vector W into its potential and solenoidal

narts:

WEEW'-}-W‘,
div W, mm G, (5.31)
tot W, wa 0, (5-32)
(5.33>
Then, for W, we have: E,=-0 )
W,_a,,w,_—.;w,_ f (5.34)
whence it follows that: W Wielt! o Whets! (5.35)
For W‘ we have:
divsu_!—:’::—'ba dis W, (5-36)
and consequently: iasy
E TR (5.37)
W,-(&;,_%)w.u_-}‘;qw,‘
(5.38)
from which it follows thats
Wy e Wi, {5.39)
t e




M [tayh
=a=)" (5.40)

We will note that the transverse and longitudinal waves (when q — 0)

are particular cases of solutioms of W and Wg. Therefote,cgk and W
are usually called the frequencies of longitudinal and transverse vibra~

tions respactively. We will explain the physical sense of the results

obtained by examining vibrations with a small but finite q (Ala’;- %«L

where I, is the dimensfons of the crystal). For transverse waves,
regicns of a positive and negative charge alternating with a period 2, .
will appear on the surface of the crystal. 1In doing so, the aggregste ’
field from these regions will be equal to zexo in the center or the crystal.
But in the case of longitudinal vibrations e following field appears:

which will be added tc the restoring force. If it is taken into account

3 that P=byiW + booE (see 5.23a), then (5.37) is immediately obtained
- frem (5.41).

: In nonionic crystals by;~®0 and the frequencies &) and w,
= coincide.

A A AT

[ &

= - .

= - *

= - -

3 w o E :

. £-0 l b
! -7y :

= Figure 5.3. Charges appearing on the
- surface of a crystal with limit dipole
vibrations of the lattice.

a -~ transverse vibrations; b ~- longi-
tudinal vibrations.

=

o

It shoutd be noted that the difference between &) and W, 1is of
paramount significance upon the ampearance of a situation conducive to a
ferroelectric transition. From the microscopic point of view, fer ionic
crystals this difference is connected with the circumstance that compo-
nents of effeccive field which coincide with the divection of propagation
of vibrations and are perpendicular to it differ substantially from each
other. This was already discussed above. This feature becomes e¢ven more

g e Mt
P e 00 R T

o W !
o

i

e
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1) If this condition is not satisfied, the frequencies of limit

vibrations will depend on the shape uof the crystal (see below for more
detaiis),

"
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obvious in the most interesting case of long waves for simple crystails
having high symmetry. The field acting on an ion of a polarized crys-
tal lattice is equal to the sum of the average macroscopic field E and
the field Ey which takes account of the action of dipoles situated ..-
side Laurentz sphere (see paragraph 2, chapter 4):

Leaving aside the question of the values o E (in the case of
diatomic cubic crystals E1=0) we have; according to tll}, when q-+0:

4,
e A FTRICNTT

where p 1is5 dipole moment of a unit cell., It fellows from this that
E}q=0 and E| gq= -4%¢CP,

Thus, for longitudinal vibrations the crystal lattice is more
rigid and the frequencies ), are always higher than w,.

Simila» results may also be obtained for ionic crystals by using
Ewzld method | t1, 12] (see also chapter &, paragraph 2).

It can be shown that the compcnents E?‘:) (q-+0} for a lattice of

peint ions will contain terms which depend on the direction of q-%0:

LI T S (5.42)
v vVmm,

Here z,7:d z,, are ionic charges; mw, ¥ and v arc the volume
of a unit cell. Tne expression (5.42) depends cn the direction of q—»0
and, thevefore, for different directions of q-»0, different frequencies
will obtained from the equation (5.22). 1t c¢a be shown that in the
simplest case of diatomic optically isotropic cubic crystals everything
will be reduced to the aopearance of the frequencies ) and . which
do not depend on the direction of q-»0. The ratio (3.40) is called
Liddan-Saks~Taller ratio. On the basis of this ratio we may also point
out the existence of a soft mode: it may be seen that it £0 sharply
increases in some temperature range, the frequency of the transverse di-
pole vibration )  should decrease in order that the relaticmship (5.40)
be satisfied.

Cochran [6] generaiized Liddan-Saks-Teller ratio for the case of
cubic crystais with an arbitrary number of sublattices:

_'!.-_- i .‘ﬁ. (551‘3)

R B H

Here n is the number of dipole optical vibrations.

» Thu§! in this case, the frequency of each limit dipole vibration
will be split into a longitudinal and transverse frequency.
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Figure 5.4. The curves «{g) with q—=0
for rutile.

of ¢ the angle formed by direction with

the terragenal axis of the crystal. The
letters m, & and t indicate the charac-
ter of the respective vibration (m -+~ mixed,
L o-- longitudinal, t -- transverse}., The
upper iztter pertains te a case when g

lies in the plane (1!0), and the lower --
when g ties in the plane (100}, the middle
letter pertains to an intermediate case.

In noncubic crystals the dzpendence on the direction of o—0 will
bear a more complex character. With ar arbitrary direction of q—%0 the
limit dipele vibrations will not be purely longitudinal or rramsverse.
Figure 5.4 are shown the curves @ (q~»0) showing the dependence ou the
direction of q-#0 for zutile [13].1) The indices E)y end Ay in the

In

1) In the work {13], corresponding calculations were alsc carried
out for the crystals cof MgF2, ZnF2, FeF2 and MnF2. As far as we know,
no such calculations as yet exist for concrete noncubic crystals,
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figure indicate irreducible representations of the point group of rutile
D4y (4/mmm), to which the respective normal vibrations are related (see
below for more details concerning this classficiation).

In additicn to dipole limit vibrations, crystals of rurile struc-
ture have limit vibrations not connected with the change in Jipole moment.
The calculation naturally confirms the circumstance that their frequencies
do not depend on the direction of gq-»0,

We will examine now the influence ot the effects of delay. 1) For
this purpose, one should examine the equation of lattice dynamics simul-
taneousiy with Maxwell equations., 1In Figure 5.5 are shown two sets of
sclutions characterizing a lattice in two extreme cases:

a) solution without taking delay intc account (electrostatic ap-
proximation);

b) solutions corresponding to a lattice in which the motion of ions
1s fixecd and which functicns as 2 normzl medium with a refraction index
m=\/£9° s and alss exact solutions which (see ir greater detail in [11],

p 106} represent an interlacing of these two groups of approximate solu-
tioﬂb.

Longitudinal vibrations are not affected by the effects cof delay,
but when q-#0 the, transverse vibrations begin to bear not a purely me-
chanical but a mixed radiation-mechanical character with the percentage
of energy of thase excitations falling to tne share of electromagnetic
waves increasing with the approacht of wave vector to zero (Figure 3.6).

As already mentioned above, electrostatic approximation is not
suitable for transverse vibrations with phase velocities higher than ¢
(with a wavelength}th‘z cm). Of late, the term polaritons started to
be used (see, for example, [14}) for excitations connected with the
ascending section of . he lower branch cf the spectrum showa in Figure
5.5. Experiments in [15] for quartz cenfirmed the law of dispersion
vradicted theoreticaliy for pelaritons.

We will note that when Aiatkl' y where L is linear dimen~
stony of the crystul, the spectrum of an ionic arvstal begins te depend
or its shape [ 16, !7} and resul:s illustrated in Figure 5.5 become in-
valid. 1In conpection with this, we will point out an important resuls
{see [11], p 164) zccording to which the infrared dispersion f{requency
@Wq (sec the -.xpressior 3.28) is equal to the frequency oy when the
thickness of the film is small {in comparison with the wavelangth X;fégi .

r

This result makes i+t possible to investigatc wibratien frequencies of 3
crystal from the refiection spectra of thin {ilms,

We will now discuss in the light of the results set forth above
.he physizal sense of the crystal vibration frequencias calculated with
q»0 in electrostatic approrimation, i.e. without taking the effeats of
delay into accouni, For the limit vibrations mot connected with a change

1) The effect of deiay oa latrice vibraticns Was examine” ;- ¢ the
first time by K. B. Tolpygo.
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Figure %.5. Zffect of delay Figure S5.6. Proportion of mechan«
on latt:ice vibrations. ical enezgy in transverse lattice
(see explanation in the text) vibratiens when q-0.

in dipole momenz, and for lengitudinal limit normal vibrations these re-
sults should be related to sma.l but finite wave vectors q(zq-!@L where

L is czhe length of tle crystal. For the transverse (and mixed) limit
dipole vibrations these results are related to the wavelengths of lattice

. : < -2 .
vibrations Lc‘.$ s=="10 © cm. The corresponding values of wave

WVl

vectors g are much smaller than the maximum valus of the wave vector

= : .
Gp~~'s where "a" is lattice comstant.

Linear terms are absent in the expansion of the reiationship wiq),
calculated in electrostatic limit, a~scording te the powers of ¢ with
small q for a specified direction of qe+0 (see [18], p 225). There-
fore, if calculations are carried out for q#0 and for q~10¢ ¢m™", the

2 -
result, will coincide with accuracy to {a ~19 ? percent. In zll
works on the "soft'" ferrcelectric mode, a wt(q-—m) is meant for g

~102 cxu-2 and Cdt(qo%O) is calzulated in electrostatic limit., How-
ever, it may be seen from Figure H.5 vhat when -39, q.p also tands

to zero. Necvertheless, it should be romembered that it {s net worthwhile
to examine the values of q_p<ii’L withir tae framework of the disgram

shown in Figure 5.35.

When W -40, it is obvicus that fundamentzl changes must also
occur in the spectrum of polaritons. But this question has not as yer
been investigated in detail.

4, Models of “Hard" and Polarizabie Ions

It follows from adiabatic approximaticn which underlies theory
of dynamics of crystal lattices (see subparagraph 1 of this pacagraph)
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that to caiculate the vibration spectrum of a crystal, the energy of the
fundamental electronic state & (R) should firet be calculated for
different positions of the nuclei R as the parameters, and then, re-
garding &{R) as potential energy for the motion of nuclei the forve
constants and composients of Che frequency tensor should be calculated
and the equation (5.22) solved for a set of values of ¢q 1in Brillouin
zone. However, at the present time it is difficult to carry out this
program, especially for crystals of complex structure. Therefore, ap-
proximate models are usuzlly employed for potential functions describing
the merions of nauclei, In the simplest model, potential function

is considered to be corresponding to a set of "springs" binding only the
nearest atoms. Such a model was used, for example, in subpa. +vaph 1 of
this paragraph to describe the vibration spectrum cf a linear chain. For
a rigorcus description of the spectrum of actual crystals it of%en proves
to be uasatisfactory and it is necessary to take into account the inter-
action with the following coordination spheres.

As already notsd above, in ionic crystals electrostatic forces
bear a long-range character. Therefore, Coulomb intaraction forces have
to be taken into account for all coordination spleres using special meth-
ods of summing the lattice sums, for cxample Ewala methed (see paragraph
2, chaoter 4). For an ionic crystal the simplest mod2l of potential func~-
tion requires an examination of Coulomb forces between the point ions.
The repulsive forces are taken into account only between the nearest
neighbors, A potential with a power or exponential dependence on the
distance betweern: atoms is usually selected for them:

1

Un;::— (5.4‘)3)
oL
e (5.44b)
Ump,e ¢,

An expcnent equal to 9 is usually selected. The subscripts mw
and ¥ pertain to the kinds of atoms. The repulsion constant lq.v nmy
be evaluated in terms of ionic radii using Pauling empirical formula: )

i, = 002002 {r, + 5,0 (5.45)

Here e is electron charge and <, and ry, are ionic radii of the
ions p and vV (see [11], p 45).

In the simpizst case of a cubir diatomic crystal, lattice eunergy
in the wmodel under consideration has the following form withcut the vi-
brations taken into account:

ke
Vo Aoy —e 5. (5.46)

)

1) Physizal cause of the apvearance of repulsive forces is con-
n2cted in essence with Pauli primeiple which forbids the existence at
one point of two ¢lectrons with the same gquantum numbers.
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Here 'a" is lartice constant; A, and @ are dimensionless con-
stants determined by gecmstry of the lattice, €n 1is lonic charge.

Latice constant "a" may b= determined from the condiftion of potential-
energy minimum (Figure 5.7).

J

Pacomesnge wemdy uomiw

Figure 5.7. Curve of potential energy cf
the crystal of lattice constant.

1 -- potential energy; 2 -~ Coulcmb energy;
3 -~ distance between ions.

In the case of crystals having a high degree of ionicity of the
bond (for exampie, alkaline-haloid crystals) the model of hard ions
gives results which agree qualitatively with experimental data [19].
For some crystals with a partial fraction of covalent bond this mciel
should be modified even for a qualitative comparison with the experiment,
by taking into account (in the first approximation) tha covalence of
the bonds through the introduction of effective ionic charges which
serve as the adjusting parameters [13, 20].

A unodified version of the model of point ions may be used for
complex structures consisting of ions ¢of alkalire metals and closely
packed atomic groups (for example, such as the ferroelectrics KHyPO4,
NaNOjp, ete.) {21-23]. 1In doing so, in calculating che long-range Coulomb
forces a point negative charge equai to the charge of alkaline-halnid ion
3 and situated in the center of the ion is assigned to the atomic groups
- constituting an anion, and the short-range repulsive forces are intro-
duced with the atomic struciture of the groups taken into account. 1In
this case the internal (high-frequency) vibrations of the anioun are
omitted from the examination ind oniy the relative vibrationsz of the
subiattices of cations and anions as one whole, that are of the greates:
interest for ferroelectrics are calculated.

. @
bl el

A
AT g

For some of the alkaline-haloid crystals {2/, 757 and SrTi0Oy {26
the vibration spectra were calculated with the aid ci1 the se-called model
of deformed ions %/ examined for the first time Ly Tolpygo and Hashkevich
and then by Dick% and Owerhauser [28].
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1) The coustant q characterizing the contribution of Couiomb
energy to latticu energy is called Madelung constaqt.
2) It is also called shell modecl.

W
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hecording to chis model a crystal is considered to be consisting
of cores (nuclei‘internal filled electron shells) located at the lattice
points, and valence electrons, ‘.e. tke ovter shells. The cores and shells
arec consldered to le independent sublartices bound

! with each other bcth
by the short-range ind lorg-range forces. In such a description of the

propertizs of a crysc:': account is taken of the interaction between
different jons, icns and electrons in the cuter shee’.s and also inter-
actions between outer electrons.

5. Shell Mcdel and Dynamic Stability
of the Lattice

We will write equations of motion for cores and shells,

In 2 shell model, potential energzy depends not only on the dis-
1 . . .
placezments of ions Xa but also on the displacements of electrons in
I
the outer shells Sg s

{ "o " " v 11 l‘ 1 r
Umug-r 7\ eXi Xy i Y:"""xX"P' +YONPIXE Y] ‘Y"‘«tn.P"P.)-)- (5.47)

H 1 3 H
+ai() e[+ m]e

The following uotaticns have been introduced in (5.47) g“\nd Y
1

, . . . v
are effective charge: ot ions and outer ciectrons respectively; :ik’
11 11

” and q)sxk are force constant describing short-range forces becween

1 IN\2

ions and betwaen electrons respectiveiy. The term & P'PP' ta%es
account of the interaction of electroms with their ions, and the last
addend is the total Coulomt interac.ion of all electrons arnd ions of the

-
H v

crystal; d’bis elzctron polarizability of the ion  ; P‘i"= Ypsf is dipole

2 moment. appearing with the displacement ¢f electron :=iative to its corej
- = I

E* ic a field acting on tle p~th ion at the point I.

—
bl

If electron mass is considered to be negligibly small in compari-
son wich ion mass (this corresponds to the circumstance that at the
frequencies urder consideration, electron followe t.  field withou., -
lag), th.n the equations of morion for electrons anu ions wili acquire

-
.-
i

K

5 the following fora: 0 oy ‘
. ‘; ———-'—‘_'
% P
3 A 5.548
: L (5.%8)
A Xpww — 7.
eX?
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Here m,, is the mass of the s-th ion.

We will seek solutions for the displacements of ions, electrons
and other quantitiss connected with them, in the fellowing foom:

Xb e XP oxp ¢ (X —ut), (5.49)

pai .
whare (W), q@vi‘- mé A are the frequency, wave vector and wavelength
of the respective normal vib: =:icn.

After a substitution of (5.49) inro (5.48) we will obtain the
following set of equations:

i NMMPW«&‘_W‘* . S

ST HEF NG R EHER 8 (TR 202 {5.503
Lnk J Ln* J

0= W12 42
:11 s

3
3

3

o lxg +(§_: N+ YO8
s ]

Notstions of the following type have Leen introduced in (5.50):

h
Lt -Eh: 23 exp g (Ak 4+ RP — Ry

The quantities C?; represent structural coefficients of internal
field (see in more detail [11, 29} and paragraph 2, chapter 4).

It is convenient to rewirte the set of equations (5.50) in matrix
form:

Wm X {R A C X ST +5(Y) 8 (5051)
Y= (T 4 Y1} X 4 (4 4 YCY) S,

Eliminating S from the equations (5.5!), we will obtain equatiors
for ionic displacements:

ufm‘.\'-m'f‘.‘.. (5. 52)

where (1) is a matrix =- a component of “effective" frequency lensor --
haviang the foliowing form:

I Rt s e (T e 28Y )00+ YOYYU(T 4 ¥ ER. (5.53)

The set (5.52) has nonzerc solutlons when and only when

A AN
am v 1 -
lg’\:‘._.,-,-, ai={ (e 5 !

The secular equation ¥5.54) is analogous to the ejquation (5.22)

and; thus, shell model is reduced to Bern-Karman theory., In doing so,

it points out a physically cizar method for the calcuta=ion of components
of the frecuency tensor with account taken of the long -range and short-
range forces and polarizabilities of icns. However, in the calculations

+“ithin the framewcrk of this mode! (see beluw, paragrapt.  of this chap-
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ter) it is necessary to use a Jirge number of adjusting parameters.
Therefore, at the first stage it is cften expedient to make an attempt

to interpret the vibration spectrum with the aid ¢f simpler models, and
then pass or. to several shell models of increasing complexity, correct~
ing the imperfections of prelimipary calculations and achieving a more
detailed agreement with the experiment, the way tils wes done, for example,
in the work [26] for $r7i03.

One of important features of dispersion equations (5.5%) 1, that
when q-»0 the frequencies of acoustical branches tend to zero whereas
the frequencies of optical branches remain, generally speaking, finite
even in the case of infinitely long waves. The circumstance that when
&0 one of the solutions of (5.54) isc c02=0, follows frem the special
characteristic of all square matrices, R, T and, consequently, of the
matriz & with this characteristic counsisting in a docreas: of the rank
of these matrices by three unities when ¢=0, i.e. | ;t135=0,

In particular, tFis condition follows directly from an examination
of equilibrinm of the crystal upon its translation as one whole (q=0).
Another important feature of dispersicn equation is the difference in
the character of w(g) of the transverse and loagitudinal vibrations, which
is connected with the above-mentioned feature of the macrcscupic field E,
with this feature consisting in that the components ot the field coincid-
ing with the Zirvection of the propagation of vibrations and perpendicular
to it substantially differ from each other. This may _be shewm directly
as a result of aazlyzing Covlomb tems contained in d?.

A necessary condition for stability of vibration process taking
place in a crystal is the reality and difference from zero of all of its
characteristic frequenices. This condition is defined by the secular
equation (5.54). Naturally, this statement dees not extend to the triv-
ial solution, i.e. vanishing of the frequencies of the transverse and
longitudinal vibrarions of acoustical branch when g=0, which describes
extreme case of vibraticns, i.e. a uriform displacement of the crystal.
Complaxity ov equality tc zero of the frequencies of any one ¢f the vi-
bration modes indicates the presence of an aperiodic component in the
time factor of the solutions (5.54). This is equivalert to a de~
struction of the lartices or to such a change in its structure with which
the vibrarions again become stable. In atcordance with tha well-<nown
theorem in [30]3, condition for the existence of only positive solutions
is satisfied if all principal minors of the determinant made up of the
elements of the matrix are positive, i.e.

pereydy .9, {5.5%)

and, consequently, vanishing of one of the principal minors of (&} in-
: . ] s : 13

dicates insrabilirv of the crystal structure in guestion. *J

1) It may be considered that a pbase transition of the first kiw
takes place when the values of the principal minors of are pesitive
or differ litrle ‘rom zero {(compare with chapter &, paragrapn 1, subpara-
graph 2).

- 175 -




The condition {5.53) itc u general expression detining the stability
of a crystal and could be laic down as a bLasis of a genreral theory of
phase transitions. In particulay, the expressior (5,53) was used by
Thompson to determine the melting poiants in crystals [3i]. 1t is obvious
that in order to obtain temperature dependences of the quantities con-
tained in , as a result of which the condition {5.55) will be disturbed
at a cerctain temperature, we cawmnot limit ourselves to a purely harmonic
approximation in the inmitial wug:iations. It should be noted that introduc-
tion of anharmonicity into thesz equations «ven when it is regarded as 4
small perturhation, leads to a considerable complication of the entire
problem {see, for example, [32 ) inasmuch as the normalcy (i.e. independ-
ence) of vibration wodes proves to be, stri~tly speaking, disturbed.

In Cochran theory [6, 7} this difficulty is circumvented by that
the temperature dependences of the paranieters of @ are either postu-
lated or are introduced condi:z:onally on the basis of a compz-ison with
expressions whicli follow from phencmenological repiesentations. Natur-
ally, this reduces somewhat tae "effectiveness'" of stability condition
and limits the possibilities of anaiysis of mi_coscopic mechanism re-
sponsible for the appearancz ¢! phase transitions in terms of dynamic
theory. At the same time, the applicatior of the condition (5.55) 1is
of value in itself even in 2 harmonic approximation inasmuch as it makes
it possible, in principle, to comnact the vibration spectrum of a crystal
with the phase-transition p>ints with these transitions having a diverse
nature -- they include melting, transitions connected with polymorphism
of the crystals and, finally, the ~irro- and antiferroelectric transi-
tionse.

;' e

To determine phase-trans:tiol poinus connected with a change in
the symmetry of a crystal it proves to be expedient to look for peints
of distrubance of the condition (5.35) in conformity with scme definite
mcdas of vibrations. 1In this case .t is possible to simplify the struc-
E tuce and decrease the order of the minors (to break them up into units).
For example, for crystals of cubic .ymmetry, If vibraticns propagate along
one or the principal axes of symmetry the sets of equations (5.52) are
broken up into three independent sutsets each one of which has an crder s
(two of them corresponding to Lwo transverse waves prove to bc alike),
and accordingly, the order of the matrix appearing in each one of these
equations is equal to s. As will be seen later, anciher advantage of
examining the disturbance of stability of the cryszals for one of the
modes is the possibility of a mere czartain interpretation of the phys-
ical mechanism whick is the c2use of a transitisn. !

- Vibraticns cor. “spondiug to acousticusl branch d¢ not bring about

= an appearance of electric fieids in « nonpiszeelectzic crystal and, there-
] fore, it is matural to compect the instability of electric state of a
crystal (ferrcelectric transiticn) with the instability of the system of
electric oscillators, i.e. with 2 nonfulfiliment of the coudition {5.5%)

e
o

1) See paragraph 2 c¢f tfis chapter concerning the metho?s of de-
cteasing the order of the determinant of a secuiatr 2quation ujing the
group-theory methods.
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for frequencies of the dipole limit optical branch of the spectrum. Here
the case of anomolously low freauencies of the optical branch :is of the
greatast interest. This statement playing the role of the basic thesis

of dynamilc theory of ferrocelectricity is at the same time a '"null approx-
imation" and, as will be clear later, is valid only for crystals with
weakly marked piezoeilectric properties.

We will now e.amine dielectric properties of a crystal in an exter-

nal field E=E ei“t. For this case the equation of shell model may be
written in the folloring form:
wim X we (R 4-3C3) X + {3 4 3CY) S —cEga, )
Qe (T —YC3) X 4= (2 YCY) S — &Y. } (5.56)

From these expressions we can find the dielectric constant

JP
(—1+4t-n.—‘-,

where
P (X VS

A corresponding calculation carried cut in the work [6] le s to
the following expression for static (@ =0) dielectric constant g

1,.“,-5.5:-2'—{;!)(-1-5(0”-1 s*, (5.57)

Here 2! and 2" are dynamic ionic charges with rhe numbers of
the row and column of the matvix éb(O) which were cressed out in the
calculation of the principal minor of . It is clear from (5.57) that
when Der @(G}—*O, £Lo—*c. Thus, an inference follows from the expres-
sion (5.57) that an artempt can be made to interpret the anomalous in-
crease of £, i.e. the phase transition, as a2 loss of stability by the
lattice with respect to one of the normal vibrations whose frequency be-
comes ima~‘nary. Such an approach is cquivalent to the concept of "soft
mode' examined by Ginzburg. This concept was already discussed in the
introduction te this chaprer and will be examined in detail in paragraph
4 vhich will also examine the question of the rele c¢f anhamonicity of
vibrations. This role is extremely important 'n describing a ferroeicc-
tric transizion. Application of the exprassions (5.52-%.3%) is itlus-
trated in paragraph & using simple cxamples.
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6. Aprlication of Theorvy to (lryv 's
¥1th Piezoelectri~ rroper:
in Syemetrical Phase

A
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Arn atterpt was made in the work :7T to apply the representations
of dynamic thecry to ferrcelectrics with a wmore complex svmmatry zhan
cubic crystals and having a sirong piezuvelectric eifect in paraeiectric
region.
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One of important features of this case is the necessity of examin-
ing vibrations with a wave vector #0. This is cornected with the inter-
action, chavacteristic of piezoelectrics, of waves belonging to acoustical
and optical branches of the spectrum. 1) Thus, the discussion conceras an
attempt to examine dielectric, elastic and piezoelectric anomalies from
a single point of view, i.e. in terms cf stability of a crystal lattice.

Theosry of electroelastic properties of crystals was developed by
Born and Huang [11} on the b~sis of a model of hard ions. Later, their
theory was refined by Cowley [33] who inciuded in the examination effects
connected with electron polarization. However, for the purposes of this
examination it proves to be pecssible to limit ourselves to a model of hard
ions. Neglecting of electron »ola.®zability of ions is reflected chiefly
on the results of quantitative evaluations. In doing so, qua‘itative
characteristics of a crystal change immaterially. In this case, the
equation wzmx=éx - 2zE contains the matcix ¢=R + 2Cz and E ~- a columnar
matrix the elements of which represent the amplitude of depclarizing macro-
scopic {ield equal for lengitudinal waves propagating in a diatomic crys-
tal to ~4%P).

The matrix @ is expanded into a series with respect to q:
°-61+2°2«.+%2°$’.’m.. (5.58)
4
¢0 is a matrix having ar order of 3s x 3s and a rank ef (in - 3) (i.e.
0.
Next, a matrix H:; is constructed. The elements of this matrix

satisfy the conditions that H{Q if p=1 and v=1:

zﬁﬁﬂﬁﬁ'_l“l” n“:c B, vem2, 3.,
! bl

The elements of the tewsors of elastic constants c[;.: {m’ of di-
electric suszeptibility xik and piezoelectric constants ejyg] are
expressed in terms cf the elemonts of the matrices ¢ and H in the
following manner:

. 1
i b J O (5.59)
“
{
where Uk, Im) m — < 'E (30a9,),

plezoelectric constant .
v =g 3 0H N (5.60)
~

1) Examination of vibrations with ¢#0 is aiso necessary in de-
scribing an antiferroelectric transition.
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and dielectric susceptibiliry

x“-% E(x”t)u. (5061)

pe

Bach one of the summations given here 's done over all eclemuats of
the matrix with the other indices being constant, i.e.

}: Agg 2 At;-
pe [

The matrix H is connected with the frecuencies and amplitudes
of normal vibrations in the follewiag manner:

3 Y]
3 (o, XK} om . (5.62)
j=
Here the surmmation is done over all of the normal modes of vibra-
tions (j=1, 2, 3 for q=0 are cmitted inasmuch as they correspond to the
three acoustic modes).

Formula (5.62) makes it possible to express the elements of the
matrix H in terms of the frequency vof normal vibrations. If it is
assumed, as before, rhat owing to a weak temperaLure dependence (i.e.
anharmonicity) instability occurs for any one of the modes j=f when
q-»0, then td%ﬁv(T - ©) near the transition as in the case of nonpiezo-~

I3 - - O
electric cubic crystals, while the elements of the matrix dp“ ané the

values of X{” remain approximately constant. Taking into account (5.62)
and the circumstance thut the element ot the matrix @0 dependent on

(T -9) is contained in the expressions for Cikim and eikpe an infer-

ence should be drawn that the separate elements of these tensors will
follow Curie-Weiss lav in the transition region.

For iliustration, the properties of a diatomic cubic crystal of
the zinc-blende (ZnS) type are eumﬁnedk1{7}. Crystals of this structure
are characterized by three different elastic constants cyj, cyp and
Ci4s by a dielectric constant &B of 2 fixed crystal and 56 of a free
crystal, and by oune piezoelectric constant e,,« As in the case of non-
piezoelectric crystals, conditions with which a ferroelectric transition
will be ocbserved can be obtained by an appropriate selection of the
constants characterizing the interaction of lattice elements and of the
coefficients before anhamecenic terms. A new circumstance in comparison
with the resuits set forth above, is the necessity of taking here into
account the piezoelectric effect in pacaelectric phase, i.e. taking into
account the interaction of optical and accustic modes of vibrations.

In this scheme and essential cifference is the following, In the case
under consideration the equation (5.40) is formulated as follows:
=y 2

wg ] [

(5.63)

it
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Dielectric constant of a fixed crystal consisting of hard fons
is defined by the expression (see in greater detail in [7]):

e 14 8% {1))YyRom
O TR )Y Ren *

with  &4= 5'6°24/ Cus®

<. E D .
The quantities 4t and 244 and the piszoelectric constant

€44
are defined by the relationships:

1 : ] 3 -
'f,,--;_—h-[n,(i B 2960 2x (g 6-2)(!.2--—;-1)‘-%- . (5.04)

1 H 3
.-"u-'T[a.u — 1B —1.57 2L fdm (52 2) (o,so _._% T):(7;%‘_)].

(G +2r5.08a)r 1
- v "Ry, T2 -]'

{5.65)

€14

Here R is the constant of interaction between the ions of 2Zn (1)
and of § (2) with ¢=0; Y is defined as a ratio of the force constants

12 12
@ny/ Ry

IV

Figure 5.8. Qualitative temperature depend-
ence of the quantities c¢;, and % for a
mode!l of a ferroelectric with piezoelectric
properties.

If the force constants are such that W, in the equation (5.63)
differs little from zero and that owing to anharmonicity in transition
region 2
§—4s (14 2) (t;)'m =

=y = C (T V),
then substituting this expression into (5.63) and then into {5.64) agd
(5.65) it can be shown that at a certain temperature the guantity 4
must vanish and, consequently, with a decrease of temperature thz crys-
tal becomes unstable with —espect tc the tramrverse acoustic mh e before

it becomes unstable with respect to the tran.verse optical mo \Flgure
SQB)C

In pri.cipie, using an appropriate selection of the constants of
a crysta’ it is possible to "design" a transition in which crystals, in
particular these of 2nS, will exhibit antiferrcelectric properties. For
this purpose it is necsssary to assume [ 7] that the instability of the
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transverse optical mode takes place when q= 2% (whichk corresponds to
o

the motion of like icns toward each other over one lattice spacing).

This type of transition may materialize if the temperature T, at whick

it is v~ “e observed proves to be considerably higher than @ (compare with
chapt-: |, paragraph 4, subparagraph 3). Such a situation zpparcently

aris = NHgHoPO4.  According to the data of Magamija [34] an antiferro-
electric transicion of this crystal may bz defined from the standpoint

of his examination as instability with respect t» the mode of vibrations
naving a lower frequency than the ferroelectric mode.

Application of representations on the mechanism of a ferroelectric
transiticn on the basis of displacement of ions co hydrogen-containing
ferroelectrics (for example, Sciynette's salt and KH2PO4) leads to a
number of difficulties., It might be assumed that the double transition
in Seignette's salt is connected with the situation examined above when
the crystal has two transition peints one of which is brought about by a
stroug piezoelectric «ffect (see paragraph 3, chapter 3), i.e. by in-
stability with respect to acoustic mode of vibratiocns. However, at the
present time, physical mechanism of ferroelectric transition in these
crystals is as yet insufficiently clear (see also paragraph 3 of this
chapter).

Par. 2. Group-Theory Analysis of Vibration Spectra in Crystals

Calculations of vibration spentra of actual crystals are connected
with considerable -difficulties. 1In addition to a large amount of calcula-
tions these difficulties are brought about by insufficient information on
potential functfcn of a crystal. The last is especially essentia! for
farrcelectrics rapresenting chiefly crystals with a complex structure and
a large number of atoms in the unit cell.

The results of calculations ¢f vibration spectra may greatly de-
pend on the model used, with the simple models proving to be insufficiently
effective in a number of cases; on the other hand, in ccmplex models it
is necessary to introduce a large numbar of adfisting parameters which
impair che reliability of theory. Because cf chis, results which can be
obtained on the basis of general principles without resorting to concrete
models and tc the approximation cornected with them, acquire special sig-
nificance.

Such results may be obtained first of all with a comsistenc taking
{nto account of the crystal symmetry using group-theory methods. Group-
thecry approach affords *he fcllowing possibilities.

a. It makes it possible to predict the number of bands in a vibra-
tion spectrum fer a specified value of the wave vector gq, the multipiicity
of degeneration of the bands, the character of their polarization and the
types of splittings in the case of minor changes in the wave vector.
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b. Using che projection operators it is possible to find at the
cingular (symmetrical) points of Brillouin zone 1) the symmetry coordi-
nates the linear combinations of which are normal vibrations; in this
manner the mode of nommal vibrations is determined directly in a number
of important particular cases (see paragraph 3 of this chapter).

c. The determinant of secular equation {5.22) at the symmetrical
points of Briliouin zone can be reduced to a product of several deter-
minants of lower order. This makes the calculaticns considerably easier
mzking it possible in a number of cases to obtain resuits in analyvtical
form even for complex crystals.,

d. Group-theory analysis also makes it possible to follow up a
change in vibration spectra (i.e. to prcdict a charge in the numher of
lires and the splitting of the bards) in the case of phase transitions
and external .ctions on a crystal.

e. For displacement~type transitions, in parciculac for ferro~
electric transitions, using the concept of f'soft mods it is possible to
limit the class of pecssible changes -- predicted by Landau theory -- in
the symmetry of a crystal during a phase transition,

1. Princidles of Group~Theorv Anzlysis
of Vibration Spactra iu Crysuals

Group-theory analysis of vibration spectra is based on the circum-
stance that each normal v‘bration is trans{owmed in accordance with an
irreducible representati ,n of a symmetry group, with the multiplicity of
the degenerat .» of » vibration being equai to the dimensionality 2f the
representatio-. - see, for example, [35, 36]). Therefore, for a group-
theory analysis it is necessary to find the chacracters of reducible rep-
cesentation according to which the entire assemblage of ncrmal vibratioms
is transformed for a specified value of the wave vector g (such a re-
ducible representation is called mechanical representation} and it is also
necessary to expand the mechanical representation into irveducible rep-~
resentations of the wave-vector group.

The characters of a mechanical representation }( may be
found from simple geometrical considerations. With a turn’by z2n angle @
about the z-axis the ccordinates , v and z of Cartesian system are
transformed in accordance with the foliocwing rule:

sgemXcme- Ysing, (5.66)
y=X siny+¥ea'.
1=Z.

17 Basic concepts connected with irreducible representations of
3pace groups and projection operators are set forth ir brief form in
chapter 6 w*:re reflerences to respective literature are also given.
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With a mirior turn by ar angle ¢ we have:

zem Xcos9—Yeosy,
LN i ;,Ym" (5067)
o2,

The traces of the matrices (5.66) and (5.67) are equal to 142 cos ¢
and ~i+2 cos ¢ respectively, Taking also inte account that translations
to the lattice vector Ah (here 2 is a matrix of the base vectors of
the lattice) in an irreducible repres=ntation of a space group (see chap-
ter 6) corresponds tu a multiplication by exp - iqhh,we obtain [36]:

I.(()"(ilﬁ-zmy)?ﬁ,c“"". (5.68)

Here the group element g=t,S where ty is a "norelementary trans-
lation" (i.e. transiation over a portion of the lattice spacing) and §
is a turn or a mirror turn. The plus sign corresponds to a turn and the
minus sign -- to a mirror turn; nh indicates tne numbers of atoms in a
unit cell with number zero, which passed Into the unit cell h under the
action of the symmetry element g without chenging their number.

After the character: of mechanical represerntation have been cal-
culated the numbers m,, of the normal vibrations tran formed in accord-
ance with irreducible representation of < P of the wave~vector group
Ggs can be found using the follewing formula:

{
ey i D 1416} B3 ) (5.69)
A

Here Ngq 1is the order of the group Gg» .o(8) 1is the char-
acter correspending to the element g in the irreducible representa-

e 3
r:on of 7qp

Ty (6) = fgp (S) ™10, (5.70)

where is the corrasponding character of a lecaded irreducible rep-

resentation. The chzracters of loaded representations for all irreduc-
representations of the space groups are given in the monogragh [37].

Compatibility relaticnships {they are also sometimes called cor-
relation relationships) ar: also fourd in group-theorr analysis. These
velatione’ ips chow the change in irreducible representations in accordance
with which normal vibrations are transformed with such a small change in
the wave vector q that its gcoup changes. Gompatibility relationshiys
define, in particular, the adhesion or splitting of the hranches of vibra~
spectrum with a ci~age in q.
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In order tc determine them it is necessary to zalculate the numbers
m tnt

qps q'P which show how many times the irreducible representation is
contained in the representation v __:

ap
1 5.7
vy =T, 'g 3y (5) <Atz 15yt (5.71)
:

Relationships similar to (5.71) also make it possible to foilow
a change in vibration spectrum in phase transitions in the case when a

symmetry group of one of the phases {s a subgroup of a symmetry group
of another phase.

For cxample, for the limit normal vibrations such an investigation
is reduced to a calculation of the numbers:

i
n”.-vz X @) x3 (). (5.72)
<o,

Here N is the order of the point group cf 2 low-symmetry phase, and
} and j' are the numbers of irreducible representations of the sym-

metry groups G, and G, of the high-symmetry and lew-symnetry phases
respectively,

The problem of change in vibration spectrum in the case of an
external action on the crystal is reduced in essence to the preceding
problem if, in accordance with Curie principle, we mean by the symmetr
geoup of a cyystal in the prasence of an external influence a group

consisting of symmetry elements common for the crystal and external in-
fluence,

Examples of using the relationships (5.71) ang (5.72) wilil be
given in paragraph 3 of this i l:prer. Paragraph 3 is devoted to the

analysis and calculation of vibration spectra of concrete ferroelectric
crystals.

2. Syume:iry Coordinates and 3Sp.itting of
Secular Equation at the Symwetric Points
of Brillouin Zoae

Initial equations of Born-Karman theory (see 3.20)

] B r

. ($--§:Q?;l; (So 73)

are written In Cartesian coordinates of displacements of all atoms of a
crystal. However, 2 substitution of che following form

!
X7 2F (q) 'Y, {5,76)

i.e. making use of translation symmetry cf the laitice makes it possible

- 184 -

£
£
&
3%
3
3
=
?
z
2
2
b
-é',

oy

I REAM a0 e

TSR R e T ot ol

e

TR W e A

E
i
i
:




te reduce the initial system of equations of the order of 3Ns, where 3Ns
is the number of degrees of freedom of the crystal, to a set of systems of
equations of the order of 3s where s is the number of atoms in a unit
cell for N wvalues of the wave vector.

Accordingly, a secular equation of the order of 3INs which could
have been writ“en tor the initial system (5.73) ir split into N secular
equations of an order which is smaller by N times. This splitting
proved to bYe possible because we (using the language of group theory)
passed on from a coordinate system in which crystal symmetry was not
taken into account, to ccordinates transfomming in accordance with the
irreducible representations of a symmetry group -- in the case in ques-
tion in accordance with irreducible representatiors of a translaticn
group. The fact that the coerdinates X?(q) are transformed in accord-
anice with irreducible representation T, of the translation subgroup
can pe easily proven by a direct verification.

Thus, the tasic property of the crystals common for all of them --
translation symmetry, is automatically taken into account in Born-Karman
theory. However, the point symmetry thz elements of which will remain
for the wave vectors q at the symmetric points of Brillouin zone, is
diffcrent for different crystals and different vaives of q and it can
be taken into account during concrete caiculations. Projection operators
should be used to d-termine the symmetry coordinates (see chapter 6).
After all of the symmetry coordinates have been fcund, bearing in mind
that normal vibrations which are transformed in accordance with <he
irreducible representation under consideration, are a linear combina-
tion of the rvespective symmetry coordinates, son: tonclusions concerning
the mode of normal vibrations may be drawn in a aumber of cases without
a calcutation.

In particular, if only one normal vibration is transformed in accord-
ance with the irreducible representation in question. its mode will coin~
cide with the respective symmetry coordinate with accuracy to the normal-
ization constant.

If we pass on from the base of the coordinates X?Yq) to the
base of symmetry coordinates which take point symmetry into account,
then the secular equation (5.22) of the order of 3s for the determina-
tion of v bratiou frequencies of the crvstal with a spacified q ma;
decompose into units. Each unit will be related to s certain irreducible
representation, and the order of the unit will be equal to the number mqp
(see [331) of normal vibrations which sre transformed in accordance witn
the irreducible representation in question. To split the secular equation
the matrix @ (q) of the components of tic frequency temsor should be
subjected to a unitary transformation:

& (NP0, {(5./75)

# = : . - 3 I
Here U 1is a trensformation matrix which brings about the transition
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to the base of the symmetry coordinates, D i D is a matrix which {s
transposed and is a complex conjugate with respect to .

Examples of using symmetry coordinates in the calculation and auzl-
ysis of vibration spectra of ferroelectrics will be given in paragraph 3 of
this chapter. For the time being we will note that, for example, in the
calculation of vibraticn spectrum for a simplified model of KH2POs by
means of a transformation of (5.73) it was possible to obtain analytical
formulas for vibration frequencies even from a 12th-orger secular equaticn.

3. Selection Rules

Selection rules which determine whether a given normal vibration
will appear 1a infrared spectra or Raman spectra are hased on a general
theorem [39] according to which the integral taken from a function which
is transformed in accordance with a non-unit irreducible representation
of 2 group over the entire configuration space is idertically equal to
Zero.

It follows from this theorem chat for a fu ction F relating to
a reducibdle representation v, $Fdv  will be nonze-o orly in the case
if T contains a unit representation.

We will apply these results to obtazin selection rules for infrared
absorption the 1atensity of which in lorg-wave approximation [40] tc de-
fined by the square of the modulus of the wairix elemen:z of the dip: e
moment:

kea = vib) QLI T I (5.76)

t . ) . end .
Here ‘f{vib and *Evib are the initial any firal wave fur .tions

of vibratory states., The integrand of the matrix element {5./€) is trans-
formed ir accordance with the following cepresentation:

t—tlﬂxy:<, . (5.77)

TR}
where 1:(2) and 1T
with which ‘kZVib and

are irreducidle representations in accordance
cPlvib r~sypectively are transformed, ' 1is a

vec .or representacion in accordance w:ith which the dipcle moment d is
cransformed. For the serivity of the 4’1vib"’£?2vib transition it

is necessary that T contain a unit rnpresenta%ion or (which, as can be
shovn, is the same) that (D x v cantain (1),

1} It is convenieat to take as U a rectangular matrix correspond-
ing te symmeiry coordinates only for one irreducible representaiion se-
lected. Then, as a result of transformation of {(5.73) we will obtain a
unit of sscular equation =lated to the specified irreducible representa-
tioa F281.
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Diagonal matrix elements require special examination. 1n this
case there i1s only one set of wave functions and their »roducts in pairs
realize the so-called syrmetric product of the representations {Cr})]z
[39] and not a direct product of xJ x ¢J. Therefore, for the presence
of diagonal elements it is necessary that the unit representation be con-
tained in the product of:

(M) F. (5.78)

As an example w2 wili examire selection rules for the first-order
infrared spectra in wiaich vibracvions with a wave vector g=0 appear,

If a cransition takes place from the fundamentzl (completely
symmetrical) state, then it follows from {5.77) that the irvaducible
representation in question is "aciive" in the infrared spectrum if it
is contained in vector representation, i.e. if one cr several vector
components are tyansfo.med in accordance with it.

In a similar manne: it can be shown that if, neglecting the ab~-
sorption, the tensor of polarizability of the crystal is considered to
be symmetric, then irreducible representations which are contained in
(V'Y will {2 "active" in the first-order Raman spectrum.

Aftec carrying out a more detailed analysis and determining pre-
cisely which component of polarizability tensor is transformed irn accord-
ance with a given irreducible representation, it is possible to predict
in a number of cases the polarization of scattered radiation oy the sym-
metry of normal vibration and vice versa. In the next paragraph this
method will be explained using the Raman spectrum of the ferroelectric
NaNO7 as an example.

4, OGroup-Theory Analysis of ULimit Tipole
Vibrations in Ionic Cryscris

The standard group-theory analysis does not take into account the
dependence of the limit dipole vibrations on <the direction of the wave
vecior q-%0. At the same time, examination of this dependence may mate-
rially change the interpretation of the bands of vibration spectra in
ionic crystals, To take this dependence into account in group-theory
analysis the limit dipole frequencies should be classified according te
irreducible representations of the wave-vector group whereas the non-
dipole limit vibrations are classified, as before, according to the
irreducible representations with q=20 [41].

In order to carry out a group-theory analysis of dipole limi{t vi-
brations for a given direction of q-% it is convenient to carry out
firast the standard group-theory analysis for q3%0 and then make use of
compatibility relationships for irreducible representations of the point
group that are active in infrared spectra. MHowever, it should be taken
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into account that the degree of split:*~q may prove %o ke smaller than
that predicted by grous theory. Thus, in ionic cubic diatomic opticaily
isotropic crystals the thrice degenerated frequency of dipole vibration

is split by the macroscopic field into an undegenerated frequency of longi-
tudinal vibration and twice degenerated frequency of the transverse “ibra-
tion. These frequencies do not dzpend on the dirsction of gq-»0 . reas
group theory formally predicts for the whole (nonsymmetric) direction of

q a splitting into three undegenerate vibrations., 1In addition to this,
it does not follow from group-theory considerations that the frequencies
of respective vibrations must coincide for wave vectors not belonging to
one star. However, in lgss symmetrical crystals such a classification
proves to be more adequate to reality. This is shown, for example, by
n.merical calculations for cryssals cf rutile structure [13], which com-
pletely tit into the scheme of procedure given above.

Mere detailed data on normal vibratiors can be obtained by detes-
mining the iymmetry coordinates with the aid of projection operators. To
deteruine symmecrry coordinates of dipole vibrations with a specified
directioa of gq~?0 symmetry coordinates should first be found with the
aid of projection operators for irreducible representations with =0,
and tnen a "cecondary preojection' should be carried out by applying to
the symmetry coordinates obtained the projection operators for irreducible
representations with a given wave vector q. The advantage of such an
approach consists in that it does not affect at 211 the symmetry coordi-
nates of nondipole vibrations for which the usual procedure iz applicable.
With the aid of symmetry coordinates it is possible to determine the chazr-
acter of dipole limit vibrations (longitudinal, transverse or mixed) and also
set up tranrformation matrices ard split with their aid the secular equa-
tion for determining the vibration frzquencies (see subparagraph 2 of
this paragraph).

5. Limitations Tmposed on Fassivle Changes
in Symmetry irn the Case of Phase
Trarsitions of Displacement Type

_andau thermodynamic theory of phase transitions of the second
kind limits the class of possible -hanges in symmetry in the case of a
phase transitisn (ser paragraph 2, clhapter 3). K wever, as jointed ovt
in the work [42], in transitionrs of displacement type when “ae¢ "order"
parameter ls connected wich the "soft mode" on. wore limitation should
ho irposcd on the irreducible representation accounting for the phase
transition: it must be contained in mechanical 